Skip to main content

How Ricin Reaches its Target in the Cytosol of Mammalian Cells

  • Chapter
  • First Online:
  • 883 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 18))

Abstract

The cytotoxic plant protein ricin comprises a lectin B chain that binds promiscuously to glycolipids and glycoproteins at the surface of mammalian cells, disulphide-coupled to a toxic A chain which depurinates target ribosomes. To find these cytosolic targets, the A chain has to cross a biological membrane, which is not a simple task for a folded protein. The secretory pathway of eukaryotic cells is reversible and ricin can take advantage of this to move from the plasma membrane, via the Golgi, to the ER whose membrane is crossed to gain access to the cytosol. Since membrane traversal is preceded by an unfolding step, there is a clear requirement for cytosolic re-folding of ricin to gain a catalytic conformation. This final step for ricin is accomplished after triage by cytosolic chaperones, underlining the central role of these in cellular protein folding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amessou M, Fradagrada A, Falguières T, Lord JM, Smith DC, Roberts LM, Lamaze C, Johannes L (2007) Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci 120:1457–1468

    Article  PubMed  CAS  Google Scholar 

  • Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE (2000) Ribosome-mediated folding of partially unfolded ricin A-chain. J Biol Chem 275:9263–9269

    Article  PubMed  CAS  Google Scholar 

  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle B, Taupiac MP, Lord JM, Roberts LM (1997) Ricin A chain can transport unfolded dihydrofolate reductase into the cytosol. J Biol Chem 272:22097–22102

    Article  PubMed  CAS  Google Scholar 

  • Bellisola G, Fracasso G, Ippoliti R, Menestrina G, Rosen A, Solda S, Udali S, Tomazzolli R, Tridente G, Colombatti M (2004) Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 67:1721–1731

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20:427–436

    Article  PubMed  CAS  Google Scholar 

  • Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  PubMed  CAS  Google Scholar 

  • Chaddock JA, Roberts LM, Jungnickel B, Lord JM (1995) A hydrophobic region of ricin A chain which may have a role in membrane translocation can function as an efficient noncleaved signal peptide. Biochem Biophys Res Commun 217:68–73

    Article  PubMed  CAS  Google Scholar 

  • Chen A, AbuJarour RJ, Draper RK (2003) Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI. J Cell Sci 116:3503–3510

    Article  PubMed  CAS  Google Scholar 

  • Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282

    Article  PubMed  CAS  Google Scholar 

  • Crispin M, Chang VT, Harvey DJ, Dwek RA, Evans EJ, Stuart DI, Jones EY, Lord JM, Spooner RA, Davis SJ (2009) A human embryonic kidney 293T cell line mutated at the Golgi {alpha}-mannosidase II locus. J Biol Chem 284:21684–21695

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Owens SR, Wesche J, Olsnes S, Roberts LM, Lord JM (2001) An interaction between ricin and calreticulin that may have implications for toxin trafficking. J Biol Chem 276:7202–7208

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Pinheiro TJ, Roberts LM, Lord JM (2002) Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 41:2836–2843

    Article  PubMed  CAS  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8:758–773

    Article  PubMed  CAS  Google Scholar 

  • Dyve AB, Bergan J, Utskarpen A, Sandvig K (2009) Sorting nexin 8 regulates endosome-to-Golgi transport. Biochem Biophys Res Commun 390:109–114

    Article  PubMed  CAS  Google Scholar 

  • Emmanuel F, Turpin E, Alfsen A, Frenoy JP (1988) Separation of ricin A- and B-chains after dithiothreitol reduction. Anal Biochem 173:134–141

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    PubMed  CAS  Google Scholar 

  • Falguières T, Johannes L (2006) Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biol Cell 98:125–134

    Article  PubMed  Google Scholar 

  • Ferrari DM, Söling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339(Pt 1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Haas AK, Spooner RA, Yoshimura S, Lord JM, Barr FA (2007) Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. J Cell Biol 177:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1:423–430

    Article  PubMed  CAS  Google Scholar 

  • Harley SM, Beevers H (1986) Lectins in castor bean seedlings. Plant Physiol 80:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Hasegawa H, Maruya M, Koyasu S, Yahara I (2005) Exogenous antigens are processed through the endoplasmic reticulum-associated degradation (ERAD) in cross-presentation by dendritic cells. Int Immunol 17:45–53

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42

    Article  PubMed  CAS  Google Scholar 

  • Koopmann JO, Albring J, Huter E, Bulbuc N, Spee P, Neefjes J, Hammerling GJ, Momburg F (2000) Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity 13:117–127

    Article  PubMed  CAS  Google Scholar 

  • Lauvrak SU, Walchli S, Iversen TG, Slagsvold HH, Torgersen ML, Spilsberg B, Sandvig K (2006) Shiga toxin regulates its entry in a Syk-dependent manner. Mol Biol Cell 17:1096–1109

    Article  PubMed  CAS  Google Scholar 

  • Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA (2007) The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 18:4979–4991

    Article  PubMed  CAS  Google Scholar 

  • Llorente A, Rapak A, Schmid SL, van Deurs B, Sandvig K (1998) Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J Cell Biol 140:553–563

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell 15:4426–4443

    Article  PubMed  CAS  Google Scholar 

  • Mallard F, Antony C, Tenza D, Salamero J, Goud B, Johannes L (1998) Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J Cell Biol 143:973–990

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer PU, Cook JP, Wahlman J, Pinheiro TT, Moore KA, Lord JM, Johnson AE, Roberts LM (2009) Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C. J Biol Chem 284:10232–10242

    Article  PubMed  CAS  Google Scholar 

  • McKenzie J, Johannes L, Taguchi T, Sheff D (2009) Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J 276:1581–1595

    Article  PubMed  CAS  Google Scholar 

  • Miesenbock G, Rothman JE (1995) The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J Cell Biol 129:309–319

    Article  PubMed  CAS  Google Scholar 

  • Monier S, Jollivet F, Janoueix-Lerosey I, Johannes L, Goud B (2002) Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic 3:289–297

    Article  PubMed  Google Scholar 

  • Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 101:548–559

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Kamiguchi K, Torigoe T, Nabeta C, Hirohashi Y, Asanuma H, Tobioka H, Koge N, Harada O, Tamura Y, Nagano H, Yano S, Chiba S, Matsumoto H, Sato N (2004) Localization and function in endoplasmic reticulum stress tolerance of ERdj3, a new member of Hsp40 family protein. Cell Stress Chaperones 9:253–264

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Saltvedt E, Pihl A (1974) Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem 249:803–810

    PubMed  CAS  Google Scholar 

  • Perez-Victoria FJ, Mardones GA, Bonifacino JS (2008) Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol Biol Cell 19:2350–2362

    Article  PubMed  CAS  Google Scholar 

  • Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L (2007) The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 120:2022–2031

    Article  PubMed  CAS  Google Scholar 

  • Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbe S, Lamaze C, Grant BD, Raposo G, Johannes L (2009) Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10:1868–1880

    Article  PubMed  CAS  Google Scholar 

  • Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877

    Article  PubMed  CAS  Google Scholar 

  • Rapak A, Falnes PO, Olsnes S (1997) Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc Natl Acad Sci USA 94:3783–3788

    Article  PubMed  CAS  Google Scholar 

  • Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99:13419–13424

    Article  PubMed  CAS  Google Scholar 

  • Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    Article  PubMed  Google Scholar 

  • Rosser MF, Nicchitta CV (2000) Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. I. Evidence for allosteric regulation of ligand binding. J Biol Chem 275:22798–22805

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S, Pihl A (1976) Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem 251:3977–3984

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S, Petersen OW, van Deurs B (1988) Inhibition of endocytosis from coated pits by acidification of the cytosol. J Cell Biochem 36:73–81

    Article  PubMed  CAS  Google Scholar 

  • Scott DC, Schekman R (2008) Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J Cell Biol 181:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K (2005) Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J Cell Sci 118:4039–4048

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Dascher C, Roberts LM, Lord JM, Balch WE (1995a) Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex. J Biol Chem 270:20078–20083

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Lord JM, Roberts LM (1995b) Point mutations in the hydrophobic C-terminal region of ricin A chain indicate that Pro250 plays a key role in membrane translocation. Eur J Biochem 232:458–463

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Roberts LM, Lord JM (1995c) Catalytic and cytotoxic activities of recombinant ricin A chain mutants with charged residues added at the carboxyl terminus. Protein Expr Purif 6:665–670

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Smith DC, Roberts LM, Lord JM (1998) Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. Exp Cell Res 239:293–300

    Article  PubMed  CAS  Google Scholar 

  • Simpson JC, Roberts LM, Romisch K, Davey J, Wolf DH, Lord JM (1999) Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 459:80–84

    Article  PubMed  CAS  Google Scholar 

  • Skånland SS, Walchli S, Utskarpen A, Wandinger-Ness A, Sandvig K (2007) Phosphoinositide-regulated retrograde transport of ricin: crosstalk between hVps34 and sorting nexins. Traffic 8:297–309

    Article  PubMed  Google Scholar 

  • Slominska-Wojewodzka M, Gregers TF, Walchli S, Sandvig K (2006) EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell 17:1664–1675

    Article  PubMed  CAS  Google Scholar 

  • Smith DC, Spooner RA, Watson PD, Murray JL, Hodge TW, Amessou M, Johannes L, Lord JM, Roberts LM (2006) Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum. Traffic 7:379–393

    Article  PubMed  CAS  Google Scholar 

  • Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC, Lupashin VV (2009) The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by subAB toxin. Traffic 10:1502–1517

    Article  PubMed  CAS  Google Scholar 

  • Spilsberg B, Van Meer G, Sandvig K (2003) Role of lipids in the retrograde pathway of ricin intoxication. Traffic 4:544–552

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Hart PJ, Cook JP, Pietroni P, Rogon C, Hohfeld J, Roberts LM, Lord JM (2008a) Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci USA 105:17408–17413

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Watson P, Smith DC, Boal F, Amessou M, Johannes L, Clarkson GJ, Lord JM, Stephens DJ, Roberts LM (2008b) The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochem J 414:471–484

    Article  PubMed  CAS  Google Scholar 

  • Tagge E, Chandler J, Tang BL, Hong W, Willingham MC, Frankel A (1996) Cytotoxicity of KDEL-terminated ricin toxins correlates with distribution of the KDEL receptor in the Golgi. J Histochem Cytochem 44:159–165

    Article  PubMed  CAS  Google Scholar 

  • Tai G, Lu L, Johannes L, Hong W (2005) Functional analysis of Arl1 and golgin-97 in endosome-to-TGN transport using recombinant Shiga toxin B fragment. Methods Enzymol 404:442–453

    Article  PubMed  CAS  Google Scholar 

  • Teter K, Holmes RK (2002) Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun 70:6172–6179

    Article  PubMed  CAS  Google Scholar 

  • Teter K, Jobling MG, Holmes RK (2003) A class of mutant CHO cells resistant to cholera toxin rapidly degrades the catalytic polypeptide of cholera toxin and exhibits increased endoplasmic reticulum-associated degradation. Traffic 4:232–242

    Article  PubMed  CAS  Google Scholar 

  • Tirosh B, Furman MH, Tortorella D, Ploegh HL (2003) Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J Biol Chem 278:6664–6672

    Article  PubMed  CAS  Google Scholar 

  • Tsai B, Rapoport TA (2002) Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J Cell Biol 159:207–216

    Article  PubMed  CAS  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  PubMed  Google Scholar 

  • van Deurs B, Sandvig K, Petersen OW, Olsnes S, Simons K, Griffiths G (1988) Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol 106:253–267

    Article  PubMed  Google Scholar 

  • Wales R, Chaddock JA, Roberts LM, Lord JM (1992) Addition of an ER retention signal to the ricin A chain increases the cytotoxicity of the holotoxin. Exp Cell Res 203:1–4

    Article  PubMed  CAS  Google Scholar 

  • Wesche J, Rapak A, Olsnes S (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 274:34443–34449

    Article  PubMed  CAS  Google Scholar 

  • White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147:743–760

    Article  PubMed  CAS  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    Article  PubMed  CAS  Google Scholar 

  • Wilcke M, Johannes L, Galli T, Mayau V, Goud B, Salamero J (2000) Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 151:1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Willer M, Forte GM, Stirling CJ (2008) Sec61p is required for ERAD-L: genetic dissection of the translocation and ERAD-L functions of Sec61P using novel derivatives of CPY. J Biol Chem 283:33883–33888

    Article  PubMed  CAS  Google Scholar 

  • Windschiegl B, Orth A, Romer W, Berland L, Stechmann B, Bassereau P, Johannes L, Steinem C (2009) Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS One 4:e6238

    Article  PubMed  Google Scholar 

  • Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbaur EL, Koval M, McCaffery JM, Marks MS (2005) tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 118:2279–2293

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Haslam DB (2005) Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect Immun 73:2524–2532

    Article  PubMed  CAS  Google Scholar 

  • Zolov SN, Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168:747–759

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Spooner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spooner, R.A., Cook, J.P., Li, S., Pietroni, P., Lord, J.M. (2010). How Ricin Reaches its Target in the Cytosol of Mammalian Cells. In: Lord, J., Hartley, M. (eds) Toxic Plant Proteins. Plant Cell Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12176-0_11

Download citation

Publish with us

Policies and ethics