Skip to main content

The Synthesis of Ricinus communis Lectins

  • Chapter
  • First Online:
Toxic Plant Proteins

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 18))

Abstract

Ricinus communis agglutinin II (ricin) and R. communis agglutinin I are cytotoxic seed lectins whose study has contributed to our understanding of precursor synthesis, membrane translocation, ribosome inactivation, intracellular trafficking, vacuolar targeting, protein assembly and quality control in plant cells. This chapter will focus largely on the targeting, quality control and protein assembly of these two closely related sugar binding, ribotoxic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed SU, Bar-Peled M, Raikhel NV (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol 114:325–336

    Article  PubMed  CAS  Google Scholar 

  • Argent RH, Roberts LM, Wales R, Robertus JD, Lord JM (1994) Introduction of a disulfide bond into ricin A chain decreases the cytotoxicity of the ricin holotoxin. J Biol Chem 269:26705–26710

    PubMed  CAS  Google Scholar 

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. JAMA 294:2342–2351

    Article  PubMed  CAS  Google Scholar 

  • Beaumelle B, Taupiac MP, Lord JM, Roberts LM (1997) Ricin A chain can transport unfolded dihydrofolate reductase into the cytosol. J Biol Chem 272:22097–22102

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F, Hanton S, DaSilva LL, Boevink P, Evans D, Oparka K, Denecke J, Hawes C (2003) ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant J 34:269–281

    Article  PubMed  CAS  Google Scholar 

  • Brown JC, Jolliffe NA, Frigerio L, Roberts LM (2003) Sequence-specific, Golgi-dependent targeting of the castor bean 2S albumin to the vacuole in tobacco protoplasts. Plant J 36:711–719

    Article  PubMed  CAS  Google Scholar 

  • Butterworth AG, Lord JM (1983) Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor. Eur J Biochem 137:57–65

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin–ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373

    Article  PubMed  CAS  Google Scholar 

  • Castelli S, Vitale A (2005) The phaseolin vacuolar sorting signal promotes transient, strong membrane association and aggregation of the bean storage protein in transgenic tobacco. J Exp Bot 56:1379–1387

    Article  PubMed  CAS  Google Scholar 

  • Cawley DB, Houston LL (1979) Effect of sulfhydryl reagents and protease inhibitors on sodium dodecyl sulfate-heat induced dissociation of Ricinus communis agglutinin. Biochim Biophys Acta 581:51–62

    Article  PubMed  CAS  Google Scholar 

  • Cawley DB, Hedblom ML, Hoffman EJ, Houston LL (1977) Differential ricin sensitivity of rat liver and wheat germ ribosomes in polyuridylic acid translation. Arch Biochem Biophys 182:690–695

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM (2008) Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 283:33276–33286

    Article  PubMed  CAS  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  PubMed  CAS  Google Scholar 

  • Craddock C, Hunter P, Szakacs E, Hinz G, Robinson D, Frigerio L (2008) Lack of a vacuolar sorting receptor leads to non-specific missorting of soluble vacuolar proteins in Arabidopsis seeds. Traffic 9:408–416

    Article  PubMed  CAS  Google Scholar 

  • Day PJ, Pinheiro TJ, Roberts LM, Lord JM (2002) Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 41:2836–2843

    Article  PubMed  CAS  Google Scholar 

  • de Virgilio M, Weninger H, Ivessa NE (1998) Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743

    Article  PubMed  Google Scholar 

  • DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 18:609–621

    Article  PubMed  CAS  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    Article  PubMed  CAS  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Ceriotti A, Roberts LM (2001) Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proc Natl Acad Sci USA 98:14726–14731

    Article  PubMed  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Roberts LM, Ceriotti A (2005) Endoplasmic reticulum-associated degradation of ricin A chain has unique and plant-specific features. Plant Physiol 137:287–296

    Article  PubMed  CAS  Google Scholar 

  • Ferrini JB, Martin M, Taupiac MP, Beaumelle B (1995) Expression of functional ricin B chain using the baculovirus system. Eur J Biochem 233:772–777

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Roberts LM (1998) The enemy within: ricin and plant cells. J Exp Bot 49:1473–1480

    CAS  Google Scholar 

  • Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998a) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10:1031–1042

    PubMed  CAS  Google Scholar 

  • Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM (1998b) Free ricin A chain, proricin and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem 273:14194–14199

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Jolliffe NA, Di Cola A, Hernández Felipe D, Paris N, Neuhaus J-M, Lord JM, Ceriotti A, Roberts LM (2001a) The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol 126:167–175

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Pastres A, Prada A, Vitale A (2001b) Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: selective use of an alternative route to vacuoles. Plant Cell 13:1109–1126

    PubMed  CAS  Google Scholar 

  • Frigerio L, Hinz G, Robinson DG (2008) Multiple vacuoles in plant cells: rule or exception? Traffic 9:1564–1570

    Article  PubMed  CAS  Google Scholar 

  • Gietl C, Schmid M (2001) Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften 88:49–58

    Article  PubMed  CAS  Google Scholar 

  • Gifford D, Greenwood J, Bewley J (1982) Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communis L. – cv Hale seeds. Plant Physiol 69:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Hara-Nishimura I, Inoue K, Nishimura M (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294:89–93

    Article  PubMed  CAS  Google Scholar 

  • Hara-Nishimura I, Takeuchi Y, Nishimura M (1993) Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell 5:1651–1659

    PubMed  CAS  Google Scholar 

  • Hara-Nishimura I, Shimada T, Hiraiwa N, Nishimura M (1995) Vacuolar processing enzyme responsible for the maturation of seed proteins. J Plant Physiol 145:632–640

    Article  CAS  Google Scholar 

  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408

    Article  PubMed  CAS  Google Scholar 

  • Harley SM, Beevers H (1982) Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci USA 79:5935–5938

    Article  PubMed  CAS  Google Scholar 

  • Harley SM, Lord JM (1985) In vitro endoproteolytic cleavage of castor bean lectin precursors. Plant Sci 41:111–116

    Article  CAS  Google Scholar 

  • Hartley MR, Chaddock JA, Bonness MS (1996) The structure and function of ribosome-inactivating proteins. Trends Plant Sci 1:254–260

    Article  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  PubMed  CAS  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    Article  PubMed  CAS  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152:41–50

    Article  PubMed  CAS  Google Scholar 

  • Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1997) An aspartic endopeptidase is involved in the breakdown of storage proteins in protein-storage vacuoles of plants. Eur J Biochem 246:133–141

    Article  PubMed  CAS  Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4:307–318

    PubMed  CAS  Google Scholar 

  • Hong Z, Jin H, Tzfira T, Li J (2008) Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418–3429

    Article  PubMed  CAS  Google Scholar 

  • Hunter PR, Craddock CP, Di Benedetto S, Roberts LM, Frigerio L (2007) Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol 145:1371–1382

    Article  PubMed  CAS  Google Scholar 

  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jolliffe NA, Ceriotti A, Frigerio L, Roberts LM (2003) The position of the proricin vacuolar targeting signal is functionally important. Plant Mol Biol 51:631–641

    Article  PubMed  CAS  Google Scholar 

  • Jolliffe NA, Brown JC, Neumann U, Vicre M, Bachi A, Hawes C, Ceriotti A, Roberts LM, Frigerio L (2004) Transport of ricin and 2S albumin precursors to the storage vacuoles of Ricinus communis endosperm involves the Golgi and VSR-like receptors. Plant J 39:821–833

    Article  PubMed  CAS  Google Scholar 

  • Jolliffe NA, Di Cola A, Marsden CJ, Lord JM, Ceriotti A, Frigerio L, Roberts LM (2006) The N-terminal ricin propeptide influences the fate of ricin A-chain in tobacco protoplasts. J Biol Chem 281:23377–23385

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Nakajima O, Morishita R, Nagai R (2006) Targeted anticancer immunotoxins and cytotoxic agents with direct killing moieties. Sci World J 6:781–790

    Article  CAS  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91:3403–3407

    Article  PubMed  CAS  Google Scholar 

  • Kirst ME, Meyer DJ, Gibbon BC, Jung R, Boston RS (2005) Identification and characterization of endoplasmic reticulum-associated degradation proteins differentially affected by endoplasmic reticulum stress. Plant Physiol 138:218–231

    Article  PubMed  CAS  Google Scholar 

  • Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol 114:863–870

    Article  PubMed  CAS  Google Scholar 

  • Lamb FI, Roberts LM, Lord JM (1985) Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem 148:265–270

    Article  PubMed  CAS  Google Scholar 

  • Lord JM (1985a) Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur J Biochem 146:411–416

    Article  PubMed  CAS  Google Scholar 

  • Lord JM (1985b) Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean. Eur J Biochem 146:403–409

    Article  PubMed  CAS  Google Scholar 

  • Lord J, Harley S (1985) Ricinus communis agglutinin B-chain contains a fucosylated oligosaccharide side-chain not present on ricin B-chain. FEBS Lett 189:72–76

    Article  CAS  Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208

    PubMed  CAS  Google Scholar 

  • Lord JM, Ceriotti A, Roberts LM (2002) ER dislocation: Cdc48p/p97 gets into the AAAct. Curr Biol 12:R182–R184

    Article  Google Scholar 

  • Marshall RS, Frigerio L, Roberts LM (2010) Disulfide formation in plant storage vacuoles permits assembly of a multimeric lectin. Biochem J (in press)

    Google Scholar 

  • Marsden CJ, Smith DC, Roberts LM, Lord JM (2005) Ricin: current understanding and prospects for an antiricin vaccine. Expert Rev Vaccines 4:229–237

    Article  PubMed  CAS  Google Scholar 

  • Marshall RS, Jolliffe NA, Ceriotti A, Snowden CJ, Lord JM, Frigerio L, Roberts LM (2008) The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells. J Biol Chem 283:15869–15877

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88:834–838

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Nakamura K (1999) Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 41:825–835

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Neuhaus J-M (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174

    CAS  Google Scholar 

  • Matsuoka K, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer PU, Cook JP, Wahlman J, Pinheiro TT, Moore KA, Lord JM, Johnson AE, Roberts LM (2009) Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C. J Biol Chem 284:10232–10242

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Li KY, Li HY, Yao X, Jiang L (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J 56:824–839

    Article  PubMed  CAS  Google Scholar 

  • Montfort W, Villafranca JE, Monzingo AF, Ernst S, Katzin B, Rutenber E, Xuong NH, Hamlin R, Robertus JD (1987) The three-dimensional structure of ricin at 2.8 A. J Biol Chem 262:5398–5403

    PubMed  CAS  Google Scholar 

  • Moore I, Murphy A (2009) Validating the location of fluorescent protein fusions in the endomembrane system. Plant Cell 21:1632–1636

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Piffanelli P, Devoto A, Miklis M, Elliott C, Ortmann B, Schulze-Lefert P, Panstruga R (2005) Conserved ERAD-like quality control of a plant polytopic membrane protein. Plant Cell 17:149–163

    Article  PubMed  CAS  Google Scholar 

  • Nicolson GL, Blaustein J, Etzler ME (1974) Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 13:196–204

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361–370

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Saltvedt E, Pihl A (1974) Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem 249:803–810

    PubMed  CAS  Google Scholar 

  • Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50:903–914

    Article  PubMed  CAS  Google Scholar 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    Article  PubMed  CAS  Google Scholar 

  • Park H, Suzuki T, Lennarz WJ (2001) Identification of proteins that interact with mammalian peptide:N-glycanase and implicate this hydrolase in the proteasome-dependent pathway fro protein degradation. Proc Natl Acad Sci USA 98:11163–11168

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzini E, Giovinazzo G, Bielli A, de Virgilio M, Frigerio L, Pesca M, Faoro F, Bollini R, Ceriotti A, Vitale A (1997) Protein quality control along the route to the plant vacuole. Plant Cell 9:1869–1880

    PubMed  CAS  Google Scholar 

  • Peumans WJ, Hao Q, Van Damme EJ (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15:1493–506

    Article  PubMed  CAS  Google Scholar 

  • Phillipson BA, Pimpl P, daSilva LL, Crofts AJ, Taylor JP, Movafeghi A, Robinson DG, Denecke J (2001) Secretory bulk flow of soluble proteins is efficient and COPII dependent. Plant Cell 13:2005–2020

    PubMed  CAS  Google Scholar 

  • Richardson PT, Westby M, Roberts LM, Gould JH, Colman A, Lord JM (1989) Recombinant proricin binds galactose but does not depurinate 28S ribosomal RNA. FEBS Lett 255:15–20

    Article  PubMed  CAS  Google Scholar 

  • Roberts LM, Lord JM (1981) Protein biosynthetic capacity in the endosperm tissue of ripening castor bean seeds. Planta 152:420–427

    Article  CAS  Google Scholar 

  • Roberts LM, Lamb FI, Pappin DJC, Lord JM (1985) The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J Biol Chem 260:15682–15688

    PubMed  CAS  Google Scholar 

  • Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6:615–625

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Langhans M, Saint-Jore-Dupas C, Hawes C (2008) BFA effects are tissue and not just plant specific. Trends Plant Sci 13:405–408

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson D, Gietl C (1999) Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci USA 96:14159–14164

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Natl Acad Sci USA 98:5353–5358

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Schmitz A, Herzog V (2004) Endoplasmic reticulum-associated degradation: exceptions to the rule. Eur J Cell Biol 83:501–509

    Article  PubMed  Google Scholar 

  • Shimada T, Yamada K, Kataoka M, Nakaune S, Koumoto Y, Kuroyanagi M, Tabata S, Kato T, Shinozaki K, Seki M, Kobayashi M, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J Biol Chem 278:32292–32299

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Sommer T, Jentsch S (1993) A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365:176–179

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook JP, Lord JM, Roberts LM (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    Article  PubMed  CAS  Google Scholar 

  • Stillmark H (1889) Ãœber ricin. In: Kobert R (ed) Arbeiten des Pharmakologischen Instituts zu Dorpat. Enke, Stuttgart, pp 59–151

    Google Scholar 

  • Suzuki T, Park H, Kitajima K, Lennarz WJ (1998) Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide:N-glycanase activity. J Biol Chem 273:21526–21530

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ (2000) PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J Cell Biol 149:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Sweeney EC, Tonevitsky AG, Temiakov DE, Agapov II, Saward S, Palmer RA (1997) Preliminary crystallographic characterization of ricin agglutinin. Proteins 28:586–589

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi SI, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35:545–555

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Tregear JW, Roberts LM (1992) The lectin gene family of Ricinus communis: cloning of a functional ricin gene and three lectin pseudogenes. Plant Mol Biol 18:515–525

    Article  PubMed  CAS  Google Scholar 

  • Tully RE, Beevers H (1976) Protein bodies of castor bean endosperms. Isolation, fractionation and characterisation of protein components. Plant Physiol 58:710–716

    Article  PubMed  CAS  Google Scholar 

  • Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52

    Article  PubMed  CAS  Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10:316–323

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

  • Wang Y, Zhu S, Liu S, Jiang L, Chen L, Ren Y, Han X, Liu F, Ji S, Liu X, Wan J (2009) The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant J 58:606–617

    Article  PubMed  CAS  Google Scholar 

  • Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127

    Article  PubMed  CAS  Google Scholar 

  • Wiertz EJH, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Huang AHC (1976) Protein bodies from the endosperm of castor bean. Subfractionation, protein components, lectins and changes during germination. Plant Physiol 58:703–709

    Article  PubMed  CAS  Google Scholar 

  • Zhang GF, Staehelin LA (1992) Functional compartmentation of the Golgi apparatus of plant cells. Immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol 99:1070–1083

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Frigerio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frigerio, L., Roberts, L.M. (2010). The Synthesis of Ricinus communis Lectins. In: Lord, J., Hartley, M. (eds) Toxic Plant Proteins. Plant Cell Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12176-0_10

Download citation

Publish with us

Policies and ethics