Skip to main content

Antifungal Activity of Medicinal Plant Extracts and Phytocompounds: A Review

  • Chapter
  • First Online:
Combating Fungal Infections

Abstract

The epidemiological data suggest that the incidence and prevalence of serious mycoses continues to be a public health problem. The increased use of antifungal agents has resulted in the development of resistance to these drugs. The spread of multidrug-resistant strains of fungus and the reduced number of drugs available make it necessary to discover new classes of antifungals from natural products including medicinal plants. Historically, herbs and spices have enjoyed a rich tradition of use for their medicinal properties and provide unlimited opportunities for new drug leads because of the huge chemical diversity. Assays of bioactive compounds have been reported with good antifungal properties in vitro or in vivo. It is almost impossible to discuss the various characteristics of these plants such as mode of action and extraction of active compounds in a single review. Therefore, we have focussed here mainly on the antifungal plant extracts, their use against pathogeinc and drug resistant fungi. The various classes of compounds such as phenolics, terpenoids, saponins, and alkaloids, etc., are discussed in detail. The new emerging classes of antifungal proteins and peptides are also reviewed briefly. In this chapter, we also describe the technical aspects related to the methodology for screening and identification of antifungal compounds. The technical aspects regarding the use of reliable methodology of extraction, screening, bioautography, and identification of pure compounds from crude extracts and fractions are also discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad MJ, Ansuategui M, Bermejo M (2007) Active antifungal substances from natural sources. ARKIVOC 7:116–145

    Google Scholar 

  • Achenbach H, Stocker M, Constenla MA (1988) Flavonoid and other constituents of Bauhinia manca. Phytochemistry 27:1835–1841

    Article  CAS  Google Scholar 

  • Adikaram NKB, Ewing DF, Karunaratne AM, Wijcratne EMK (1992) Antifungal compounds from immature avocado fruit peel. Phytochemistry 31:93–96

    Article  CAS  Google Scholar 

  • Adou E, Williams RB, Schilling JK, Malone S, Meyer J, Wisse JH, Frederik D, Koere D, Werkhoven MC, Snipes CE, Werk TL, Kingston DG (2005) Cytotoxic diterpenoids from two lianas from the Suriname rainforest. Bioorg Med Chem 13:6009–6014

    Article  PubMed  CAS  Google Scholar 

  • Afolayan AJ, Meyer JJ (1997) The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. J Ethnopharmacol 57:177–181

    Article  PubMed  CAS  Google Scholar 

  • Ahmad I, Aqil F (2007) In vitro efficacy of bioactive extracts of 15 medicinal plants against ESβL-producing multidrug-resistant enteric bacteria. Microbiol Res 162:264–275

    Article  PubMed  Google Scholar 

  • Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    Article  PubMed  CAS  Google Scholar 

  • Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62:183–193

    Article  PubMed  CAS  Google Scholar 

  • Aiyegoro OA, Okoh AI (2009) Phytochemical screening and polyphenolic antioxidant activity of aqueous crude leaf extract of Helichrysum pedunculatum. Int J Mol Sci 10(11):4990–5001

    Article  PubMed  CAS  Google Scholar 

  • Akinpelu DA, Obuotor EM (2000) Antibacterial activity of Nicotiana tabacum leaves. Fitoterapia 71:199–200

    Article  PubMed  CAS  Google Scholar 

  • Alanís-Garza GM, González-González R, Salazar-Aranda N, Waksman de Torres VM, Rivas-Galindo (2007) Screening of antifungal activity of plants from the northeast of Mexico. J Ethnopharmacol 114:468–471

    Article  PubMed  Google Scholar 

  • Alcerito T, Barbo FE, Negri G, Santos DYAC, Meda CI, Young MCM, Chávez D, Blatt CTT (2002) Foliar epicuticular wax of Arrabidaea brachypoda: flavonoids and antifungal activity. Biochem Syst Ecol 30:677–683

    Article  CAS  Google Scholar 

  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (2003) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infection 9:1–97

    Article  Google Scholar 

  • Aqil F, Ahmad I (2003) Broad-spectrum antibacterial and antifungal properties of certain traditionally used Indian medicinal plants. World J Microbiol Biotechnol 19:653–657

    Article  Google Scholar 

  • Aqil F, Ahmad I (2007) Antibacterial properties of traditionally used Indian medicinal plants. Methods Find Exp Clin Pharmacol 29:79–92

    Article  PubMed  CAS  Google Scholar 

  • Aqil F, Khan MSA, Owais M, Ahmad I (2005) Effect of certain bioactive plant extracts on clinical isolates of β-lactamase producing methicillin resistant Staphylococcus aureus. J Basic Microbiol 45:106–114

    Article  PubMed  Google Scholar 

  • Bahçeevli AK, Kurucu S, Kolak U, Topçu G, Adou E (2005) Alkaloids and aromatics of Cyathobasis fruticulosa (Bunge) Aellen. J Nat Prod 68:956–958

    Article  PubMed  CAS  Google Scholar 

  • Banthorpe DV, Bilyard HJ, Brown OD (1989) Enol esters of caffeic acid in several genera of the labiatae. Phytochemistry 28:2109–2113

    Article  CAS  Google Scholar 

  • Barrero AF, Oltra JE, Alvarez M, Raslan DS, Saude DA, Akssira M (2000) New sources and antifungal activity of sesquiterpene lactones. Fitoterapia 71:60–64

    Article  PubMed  CAS  Google Scholar 

  • Bbosa GS, Kyegombe DB, Ogwal-Okeng J, Bukenya-Ziraba R, Odyek O, Waako P (2007) Antibacterial activity of Mangifera indica (L.). Afr J Ecol 45:13–16

    Article  Google Scholar 

  • Bednarek P, Kerhoas L, Einhorn J, Franski R, Wojtaszek P, Rybus-Zaj M, Stobiecki M (2003) Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. J Chem Ecol 29:1127–1142

    Article  PubMed  CAS  Google Scholar 

  • Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN (1969) Screening of Indian plants for biological activity. II. Indian J Exp Biol 7:250–262

    PubMed  CAS  Google Scholar 

  • Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Gupta B, Srimal RC (1971) Screening of Indian plants for biological activity. III. Indian J Exp Biol 9:91–102

    PubMed  CAS  Google Scholar 

  • Bisoli E, Garcez WS, Hamerski L, Tieppo C, Garcez FR (2008) Bioactive pentacyclic triterpenes from the stems of Combretum laxum. Molecules 13:2717–2728

    Article  PubMed  CAS  Google Scholar 

  • Boddu J, Svabek C, Sekhon R, Gevens A, Nicholson RL, Jones AD, Pedersen JF, Gustine DL, Chopra S (2004) Expression of a putative flavonoid 3′-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins. Physiol Mol Plant Pathol 65:101–113

    Article  CAS  Google Scholar 

  • Bokel N, Diyasenu MNC, Gunatilaka AAL, Kraus W, Sotheeswaran S (1988) Canaliculatol, an antifungal resveratrol trimer from Stemonoporous canaliculatus. Phytochemistry 27:377–380

    Article  CAS  Google Scholar 

  • Bordoloi M, Saikia B, Mathur RK, Goswumi BN (1993) A meliacin from Chisocheton paniculatus. Phytochemistry 34:583–584

    Article  CAS  Google Scholar 

  • Braga FG, Bouzada MLM, Fabri RL, Matos MO, Moreira FO, Scio E, Coimbra ES (2007) Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol 111:396–402

    Article  PubMed  Google Scholar 

  • Brownlee HE, McEuen AR, Hedger J, Scott IM (1990) Anti-fungal effects of cocoa tannin on the witches’ broom pathogen Crinipellis pernicious. Physiol Mol Plant Pathol 36:39–48

    Article  CAS  Google Scholar 

  • Bylka W, Szaufer M, Matlawska J, Goslinska O (2004) Antimicrobial activity of isocytisoside and extracts of Aquilegia vulgaris. Lett Appl Microbiol 39:93–97

    Article  PubMed  CAS  Google Scholar 

  • Cannon RD, Holmes AR, Mason AB, Monk BC (1995) Oral candida: clearance, colonization or candidiasis? J Dent Res 74:1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Cantrell CL, Schrader KK, Mamonov LK, Sitpaeva GT, Kustova TS, Dunbar C (2005) Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J Agric Food Chem 53:7741–7748

    Article  PubMed  CAS  Google Scholar 

  • Carpinella MC, Ferravoli CG, Palacios SM (2005) Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from melia azedarach L. Fruits. J Agric Food Chem 53:2922–2227

    Article  PubMed  CAS  Google Scholar 

  • Cavin AL, Hay AE, Marston A, Stoeckli H, Scopelliti R, Diallo D, Hostettmann K (2006) Bioactive diterpenes from the fruits of Detarium microcarpum. J Nat Prod 69:768–773

    Article  PubMed  CAS  Google Scholar 

  • Cho JY, Moon JH, Seon KY, Park KH (1998) Antimicrobial activity of 4-Hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 62:2273–2276

    Article  PubMed  CAS  Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    Article  PubMed  CAS  Google Scholar 

  • Cojocaru M, Droby S, Glotter E, Goldman A, Gottlieb HE, Jacoby B, Prusky D (1986) 5-(12-Heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. Phytochemistry 25:1093–1095

    Article  CAS  Google Scholar 

  • Cole MD, Bridge PD, Dellar JE, Fellows LE, Cornish MC, Anderson JC (1991) Antifungal activity of neo-clerodane diterpenoids from Scutellaria. Phytochemistry 30:1125–1127

    Article  CAS  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–306

    Article  PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Cox PA (1998) The promise of Gerard’s Herball: new drugs from old books. Endeavour 22:51–53

    Article  Google Scholar 

  • Cragg GM, Boyd MR, Cardellina JH, Newman DJ, Snader KM, McCloud TG (1994) Ethnobotany and drug discovery: the experience of the US National Cancer Institute. Ciba Found Symp 185:178–190

    PubMed  CAS  Google Scholar 

  • Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  PubMed  CAS  Google Scholar 

  • Cuenca-Estrella M, Mellado E, Diaz-Guerra TM, Monzon A, Rodriguez-Tudela JL (2000) Susceptibility of fluconazole-resistant clinical isolates of Candida spp. to echinocandin LY303366, itraconazole and amphotericin B. J Antimicrob Chemother 46:475–477

    Article  PubMed  CAS  Google Scholar 

  • Dabur R, Chhillar AK, Yadav V, Kamal PK, Gupta J, Sharma GL (2005) In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydro–pyrrole derivative. J Med Microbiol 54:549–552

    Article  PubMed  CAS  Google Scholar 

  • de Bertoldi C, de Leo M, Braca A, Ercoli L (2009) Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology 19:169–176

    Article  CAS  Google Scholar 

  • de Leo M, Braca A, De Tomasi N, Norscia I, Morelli I, Battinelli L, Mazzanti G (2004) Phenolic compounds from Baseonema acuminatum leaves: isolation and antimicrobial activity. Planta Med 70:841–846

    Article  PubMed  CAS  Google Scholar 

  • Defago G, Kern H (1988) Induction of Fusarium solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiol Plant Pathol 22:29–37

    Google Scholar 

  • Deng Y, Nicholson RA (2005) Antifungal properties of surangin B, a coumarin from Mammea longifolia. Planta Med 71:364–365

    Article  PubMed  CAS  Google Scholar 

  • Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C (1968) Screening of Indian plants for biological activity. Indian J Exp Biol 6:232–247

    PubMed  CAS  Google Scholar 

  • Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS (1973) Screening of Indian plants for biological activity. IV. Indian J Exp Biol 11:43–54

    PubMed  CAS  Google Scholar 

  • Dhar ML, Dhawan BN, Prasad CR, Rastogi RP, Singh KK, Tandon JS (1974) Screening of Indian plants for biological activity. V. Indian J Exp Biol 12:512–523

    PubMed  CAS  Google Scholar 

  • Dhatwalia VK, Sati OP, Tripathi MK, Kumar A (2009) Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein. World J Agric Sci 5:297–300

    CAS  Google Scholar 

  • Dhawan BN, Patnaik GK, Rastogi RP, Singh KK, Tandon JS (1977) Screening of Indian plants for biological activity. VI. Indian J Exp Biol 15:208–219

    PubMed  CAS  Google Scholar 

  • Dhawan BN, Dubey MP, Mehrotra BN, Rastogi RP, Tandon JS (1980) Screening of Indian plants for biological activity. IX. Indian J Exp Biol 18:594–606

    PubMed  CAS  Google Scholar 

  • Douros J, Suffness M (1881) New natural products under development at the National Cancer Institute. Recent Results Cancer Res 76:153–175

    Article  Google Scholar 

  • Douros J, Suffness M (1980) The National Cancer Institute’s Natural Products Antineoplastic Development Program. Recent Results Cancer Res 70:21–44

    Article  PubMed  CAS  Google Scholar 

  • Duke (2004) Biological activity summary for cocoa (Theobroma cacao L.). J Med Food 3:115–119

    Article  Google Scholar 

  • Eloff JN (1998) Sensitive and quick microplate method to determine the minimum inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713

    Article  PubMed  CAS  Google Scholar 

  • Eloff JN, Mcgaw LJ (2006) Plant extracts used to manage bacterial, fungal and parasitic infections in South Africa. In: Ahmad I, Aqil F, Owais M (eds) Modern phytomedicine: turning medicinal plants into drugs. Wiley, Germany, pp 97–119

    Google Scholar 

  • Eloff JN, Jager AK, van Staden JS (2001) The stability and relationship between anti-inflammatory activity and antibacterial activity of South African combretum species. S Afr J Sci 97:291–293

    Google Scholar 

  • Endo K, Kanno E, Oshima Y (1990) Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry 29:797

    Article  CAS  Google Scholar 

  • Erdemoglu N, Ozkan S, Tosun F (2007) Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem Rev 6:197–201

    Article  CAS  Google Scholar 

  • Ezoubeiri A, Gadhi CA, Fdil N, Benharref A, Jana M, Vanhaele M (2005) Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odora L. J Ethnopharmacol 99:287–292

    Article  PubMed  CAS  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    PubMed  CAS  Google Scholar 

  • Fanos V, Cataldi L (2000) Amphotericin B-induced nephrotoxicity: a review. J Chemother 12:463–470

    PubMed  CAS  Google Scholar 

  • Franich RA, Gadgil PD, Shain L (1983) Fungistatic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiol Plant Pathol 23:183–195

    Article  CAS  Google Scholar 

  • Freile M, Giannini M, Sortino M, Zamora M, Juarez A, Zacchino S, Enriz D (2006) Antifungal activity of aqueous extracts and of Berberine Isolated from Berberis heterophylla. Acta Farm Bonaerense 25:83–88

    CAS  Google Scholar 

  • Fujita K, Kubo I (2005) Naturally occurring antifungal agents against Zygosaccharomyces bailii and their synergism. J Agric Food Chem 53:5187–5191

    Article  PubMed  CAS  Google Scholar 

  • Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48

    Article  CAS  Google Scholar 

  • Gearhart MO (1994) Worsening of lung function with fluconazole and review of azole antifungal hepatotoxicity. Ann Pharmacother 28:1177–1181

    PubMed  CAS  Google Scholar 

  • Giordani R, Trebaux J, Masi M, Regli P (2001) Enhanced antifungal activity of ketoconazole by Euphorbia characias latex against Candida albicans. J Ethnopharmacol 78:1–5

    Article  PubMed  CAS  Google Scholar 

  • Goa KI, Barradell LB (1995) Fluconazole: an update of its pharmacodynamic and pharmacokinetic properties and therapeutic use in major superficial and systemic mycoses in immunocompromised patients. Drugs 50:658–690

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Flores R, Arzate-Quintana C, Quintanilla-Licea R, Tamez-Guerra P, Tamez-Guerra R, Monreal-Cuevas E, Rodríguez-Padilla C (2008) Antimicrobial activity of Persea americana Mill (Lauraceae) (Avocado) and Gymnosperma glutinosum (Spreng.) Less (Asteraceae) leaf extracts and active fractions against Mycobacterium tuberculosis. Am Eur J Sci Res 3:188–194

    Google Scholar 

  • Gonzalez M, Zamilpa A, Marquina S, Navarro V, Alvarez L (2004) Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure–activity relationships. J Nat Prod 67:938–941

    Article  PubMed  CAS  Google Scholar 

  • Grasela TH, Goodwin SD, Walawander MK (1990) Prospective surveillance of intravenous amphotericin B use patterns. Pharmacother 10:341–348

    Google Scholar 

  • Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants 1982–1993. Phytochemistry 37:19–42

    Article  CAS  Google Scholar 

  • Greathouse GA, Walkins GH (1938) Berberine as a factor in the resistance of Mahonia trifoliata and M. swaseya to Phymatotrichum root-rot. Am J Bot 25:743

    Article  CAS  Google Scholar 

  • Greger H, Hofer O, Kiihlig H, Wurz G (1992) Sulfur containing cinnamides with antifungal activity from Glycosmis cyanocarpa. Tetrahedron 48:1209–1218

    Article  CAS  Google Scholar 

  • Greger H, Zechner G, Hofer O, Hadacek F, Wurz G (1993) Sulphur-containing amides from Glycosmis species with different antifungal activity. Phytochemistry 34:175–179

    Article  CAS  Google Scholar 

  • Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M, Maldonado ME, Bruni R (2009) Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ Toxicol Pharmacol 27:39–48

    Article  PubMed  CAS  Google Scholar 

  • Gurgel LA, Sidrim JJC, Martins DT, Filho CV, Rao VS (2005) In vitro antifungal activity of dragon’s blood from Croton urucurana against dermatophytes. J Ethnopharmacol 97:409–412

    Article  PubMed  Google Scholar 

  • Hadacek F, Greger H (2000) Testing of antifungal natural products: methodologies, comparability of results and assay choice. Phytochem Anal 11:137–147

    Article  CAS  Google Scholar 

  • Hamburger M, Dudan G, Nair AGN, Jayaprakasam R, Hostettmann K (1989) An antifungal triterpenoid from Mollugo pentaphylla. Phytochemistry 28:1767–1768

    Article  CAS  Google Scholar 

  • Hamza OJM, Beukel CJPB, Matee MIN, Moshi MJ, Mikx FHM, Selemani O, Mbwambo ZH, Van der Ven AJAM, Verweij PE (2006) Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. J Ethnopharmacol 108:124–132

    Article  PubMed  Google Scholar 

  • Hanus LO, Rezanka T, Dembitsky VM, Moussaieff A (2005) Myrrh–commiphora chemistry. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149:3–27

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Baxter H (eds) (1993) Phytochemical dictionary. Taylor and Francis, London

    Google Scholar 

  • Har-Nun N, Meyer AM (1990) Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry 29:787–791

    Article  Google Scholar 

  • Hoof LV, Berghe DAV, Vlietinck AJ (2008) Screening of poplar trees for antibacterial, antifungal and antiviral activity. Biol Plant 22:265–273

    Article  Google Scholar 

  • Ingham JL (1973) Disease resistance in higher plants. Phytopath Z 78:314

    Article  CAS  Google Scholar 

  • Ingham JL, Tahara S, Harborne JB (1983) Fungitoxic isoflavones from Lupinus albus and other Lupinus species. Z Naturforsch 38c:194–200

    CAS  Google Scholar 

  • Ito T, Kumazawa K (1992) Antifungal substances from mechanically damaged cherry leaves (Prumus yedoensis matsumura). Biosci Biotechnol Biochem 56:1655

    Article  CAS  Google Scholar 

  • Jahn B, Martin E, Stueben A, Bhakdi S (1995) Susceptibility testing of Candida albicans and Aspergillus species by a simple microtitre menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. J Clin Microbiol 33:661–667

    PubMed  CAS  Google Scholar 

  • Jambunathan R, Butler LG, Bandsyopadkyay R, Mughogho K (1986) Polyphenol concentrations in grain, leaf and callus tissues of mold-susceptible and mold-resistant sorghum cultivars. J Agric Food Chem 34:425–429

    Article  CAS  Google Scholar 

  • Kabuki T, Nakajima H, Arai M, Ueda S, Kuwabara Y, Dosako S (2000) Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) kernel seeds. Food Chem 71:61–66

    Article  CAS  Google Scholar 

  • Kadavul K, Dixit AK (2009) Ethnomedicinal studies of the woody species of Kalrayan and Shervarayan Hills, Eastern Ghats, Tamil Nadu. Indian J Trad Knowl 8:592–597

    Google Scholar 

  • Kil HY, Seong ES, Ghimire BK, Chung M, Kwon SS, Goh EJ, Heo K, Kim MJ, Lim JD, Lee D, Yu CY (2009) Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115:1234–1239

    Article  CAS  Google Scholar 

  • Kim KY, Davidson PM, Chung HJ (2001) Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J Food Prot 64:1255–1260

    PubMed  CAS  Google Scholar 

  • Kim YM, Lee CH, Kim HG, Lee HS (2004) Anthraquinones Isolated from Cassiatora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem 52:6096–6100

    Article  PubMed  CAS  Google Scholar 

  • Kim SS, Kim JY, Lee NH, Hyun CG (2008) Antibacterial and anti-inflammatory effects of Jeju medicinal plants against acne-inducing bacteria. J Gen Appl Microbiol 54:101–106

    Article  PubMed  CAS  Google Scholar 

  • Klausmeyer P, Chmurny GN, McCloud TG, Tucker KD, Shoemaker RH (2004) A novel antimicrobial indolizinium alkaloid from Aniba panurensis. J Nat Prod 67(10):1732–1735

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Nishino C, Tomita H, Fukushima M (1987) Antifungal activity of pisiferic acid derivatives against the rice blast fungus. Phytochemistry 26:3175–3179

    Article  CAS  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  PubMed  CAS  Google Scholar 

  • Koroishi AM, Foss SR, Cortez DAG, Nakamura TU, Nakamura CV, Filho BPD (2008) In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J Ethnopharmacol 117:270–277

    Article  PubMed  CAS  Google Scholar 

  • Kostiala AAI, Kostiala I (1984) Broth dilution and disc diffusion methods in the susceptibility testing of pathogenic Candida albicans against four antimycotics. Mycopathologia 87:121–127

    Article  PubMed  CAS  Google Scholar 

  • Kotze M, Eloff JN (2002) Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S Afr J Bot 68:62–67

    CAS  Google Scholar 

  • Krisch J, Ordogh L, Galgoczy L, Papp T, Vagvolgyi C (2009) Anticandidal effect of berry juices and extracts from Ribes species. Cent Eur J Biol 4:86–89

    Article  CAS  Google Scholar 

  • Kuc J, Henze RE, Ullstrup A1, Quacken-Bush FW (1956) Chlorogenic and caffeic acids as fungistatic agents produced by potatoes in response to inoculation with Helminthosporium carbonium. J Am Chem Soc 78:3123–3125

    Article  CAS  Google Scholar 

  • Kumar V, Karunaratne V, Sanath MR, Meegalle K, Macleod JK (1990) Two fungicidal phenylethanones from Euodia lunu-ankenda root bark. Phytochemistry 29:243–245

    Article  CAS  Google Scholar 

  • Lago JH, Ramos CS, Casanova DC, Morandim AA, Bergamo DC, Cavalheiro AJ, Bolzani VS, Furlan M, Guimaraes EF, Young MC, Kato MJ (2004) Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. J Nat Prod 67:783

    Article  CAS  Google Scholar 

  • Lall N, Weiganand O, Hussein AA, Meyer JJM (2006) Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea natalensis. S Afr J Bot 72:579–583

    Article  CAS  Google Scholar 

  • Lamidi M, Digiorgio C, Delmas F, Favel A, Egele C, Rondi ML, Ollivier E, Uze L, Balansard G (2005) In vitro cytotoxic, antileishmanial and antifungal activities of ethnopharmacologically selected Gabonese plants. J Ethnopharmacol 102:185

    Article  PubMed  CAS  Google Scholar 

  • Lavault M, Landreau A, Larcher G, Bouchara JP, Pagniez F, Le Pape P, Richomme P (2005) Antileishmanial and antifungal activities of xanthanolides isolated from Xanthium macrocarpum. Fitoterapia 76:363–366

    Article  PubMed  CAS  Google Scholar 

  • Lazar JD, Wilner KD (1990) Drug interactions with fluconazole. Rev Infect Dis 12:S327–S333

    Article  PubMed  CAS  Google Scholar 

  • Lee HB, Lee HK, Ahn YJ (2003) Antibacterial activity of oriental medicinal plant extracts toward Helicobacter pylori. Agric Chem Biotechnol 46:97–99

    Google Scholar 

  • Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER (2004) Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol Lett 26:1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zhang Z, Cain A, Wang B, Long M, Taylor J (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem 53:32–37

    Article  PubMed  CAS  Google Scholar 

  • Liyana-Pathirana CM, Shahidi F (2005) Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agric Food Chem 53:2433–2440

    Article  PubMed  CAS  Google Scholar 

  • Luciano JHS, Lima MAS, de Souza EB, Silveira ER (2004) Chemical constituents of Alibertia myrciifolia Spruce ex K. Schum. Biochem Syst Ecol 32:1227–1229

    Article  CAS  Google Scholar 

  • Luo DQ, Wang H, Tian X, Shao NJ, Liu JK (2005) Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag Sci 61:85–90

    Article  PubMed  CAS  Google Scholar 

  • Malan E, Swinny E (1993) Substituted bibenzyls, phenanthrenes and 9, 10-dihydrophenan-threnes from the heartwood of Combretum apiculatum. Phytochemistry 34:1139–1142

    Article  CAS  Google Scholar 

  • Mandal P, Sinha SP, Mandal NC (2005) Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 76:462–465

    Article  PubMed  CAS  Google Scholar 

  • Manojlovic NT, Solujic S, Sukdolak S, Milosev M (2005) Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoter 76:244–246

    Article  CAS  Google Scholar 

  • Maregesi SM, Pieters L, Ngassapa OD, Apers S, Vingerhoets R, Cos P, Vanden Berghe DA, Vlietinck AJ (2008) Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. J Ethnopharmacol 119:58–66

    Article  PubMed  Google Scholar 

  • Marston A, Gafner F, Dossagi SF, Hostettmann K (1988) Fungicidal and molluscicidal saponins from Dolichos kilimandscharicus. Phytochemistry 27:1325–1326

    Article  Google Scholar 

  • Marston A, Hamburger M, Sordat-Disercns I, Msonthi JD, Hostettmann K (1993) Xanthones from Polygala nyikensis. Phytochemistry 33:809–812

    Article  CAS  Google Scholar 

  • Marthanda M, Subramanyan M, Hima M, Annapurna J (2005) Antimicrobial activity of clerodane diterpenoids from Polyalthia longifolia seeds. Fitoterapia 76:336

    Article  CAS  Google Scholar 

  • Masoko P, Picard J, Eloff JN (2007) The antifungal activity of twenty-four Southern African Combretum species (Combretaceae). S Afr J Bot 73:173–183

    Article  CAS  Google Scholar 

  • Mathias-Mundy E, McCorkle C (1995) Ethnoveterinary medicine and development: a review of the literature. In: Warren DM, Surrerwer L, Broshenka D (eds) The cultural dimension of indigenous knowledge systems. Intermediate Technology Publications, London, pp 488–498

    Google Scholar 

  • McDowell PG, Lwande W, Deans SG, Waterman PG (1988) Volatile resin exudate from stem bark of Commiphora rostrata: potential role in plant defence. Phytochemistry 27:2519–2521

    Article  CAS  Google Scholar 

  • McGaw LJ, Rabe T, Sparg SG, Jager AK, Eloff JN, van Staden J (2001) An investigation on the biological activity of Combretum species. J Ethnopharmacol 75:45–50

    Article  PubMed  CAS  Google Scholar 

  • Mehmood Z, Ahmad I, Mohammad F, Ahmad S (1999) Indian medicinal plants: a potential source for anticandidal drugs. Pharmaceut Biol 37:237–242

    Article  Google Scholar 

  • Mel’nichenko EG, Kirsanova MA, Grishkovets VI, Tysh LV, Krivorutchenko IL (2003) Antimicrobial activity of saponins from Hedera taurica Carr. Mikrobiol Z 65:8–12

    PubMed  Google Scholar 

  • Meng F, Zuo G, Hao X, Wang G, Xiao H, Zhang J, Xu G (2009) Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J Ethnopharmacol 125:494–496

    Article  PubMed  CAS  Google Scholar 

  • Miles OH, Rosa de Medeiros JM, Chittawong Y, Hedin PA, Swithenbunk C, Lidert Z (1991)3′-formyl-2′, 4′,6′-trihydroxydihydrochalcone from Psidium acutangulum. Phytochemistry 30:1131–1132

    Article  CAS  Google Scholar 

  • Miles DH, Chittawong V, Hedin PA, Kokpol U (1993) Potential agrochemicals from leaves of Wedelia biflora. Phytochemistry 32:1427–1429

    Article  CAS  Google Scholar 

  • Mizobuchi S, Sate Y (1984) A new flavanone with antifungal activity isolated from hops. Agric Biol Chem 48:2771–2775

    Article  CAS  Google Scholar 

  • Mohamed IE, Nur EBEE, Choudhary MI, Khan SN (2009) Bioactive natural products from two Sudanese medicinal plants Diospyros mespiliformis and Croton zambesicus. Rec Nat Prod 3:198–203

    CAS  Google Scholar 

  • Mokbel MS, Hashinaga F (2005) Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. Am J Biochem Biotechnol 1:125–131

    Article  Google Scholar 

  • Muirhead IF, Deverall BJ (1984) Evaluation of 3, 4-dihydroxybenzaldehyde, dopamine and its oxidation products as inhibitors of Colletotrichum musae (Berk. and Curt.) arx in green banana fruits. Aust J Bot 32:375–382

    Article  Google Scholar 

  • Muschietti L, Derita M, Sülsen V, Muñoz JD, Ferraro G, Zacchino S, Martino V (2005) In vitro antifungal assay of traditional Argentine medicinal plants. J Ethnopharmacol 102:233–238

    Article  PubMed  Google Scholar 

  • Nagata T, Tsushida T, Hamaya E, Enoki N, Manabe S, Nishino C (1985) Camellidins: antifungal saponins isolated from Camellia japonica. Agric Biol Chem 49:1181–1186

    Article  CAS  Google Scholar 

  • Naldoni FJ, Claudino AL, Cruz JW Jr, Chavasco JK, Faria e Silva PM, Veloso MP, Dos Santos MH (2009) Antimicrobial activity of benzophenones and extracts from the fruits of Garcinia brasiliensis. J Med Food 12:403–407

    Article  PubMed  CAS  Google Scholar 

  • Natarajan P, Katta S, Andrei I, Ambati VBR, Leonida M, Haas GJ (2008) Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine 15:194–201

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  PubMed  CAS  Google Scholar 

  • Ng TB (2004) Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides 25:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137

    Article  PubMed  CAS  Google Scholar 

  • Ohtani K, Mavi S, Hostettmann K (1993) Molluscicidal and antifungal triterpenoid saponins from Rapanea melanophloeos leaves. Phytochemistry 33:83–86

    Article  CAS  Google Scholar 

  • Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305

    Article  PubMed  CAS  Google Scholar 

  • Okeke IN, Laxmaninarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Klugman KP (2005) Antimicrobial resistance in developing countries. Part 1: recent trends and current status. Lancet Infect Dis 5:481–493

    Article  PubMed  CAS  Google Scholar 

  • Okunade AL, Hufford CD, Richardson MD, Peterson JR, Clark AM (1994) Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. Pharm Sci 83:404–406

    Article  CAS  Google Scholar 

  • Olli S, Kirti PB (2006) Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L. J Biochem Mol Biol 39:278–283

    Article  PubMed  CAS  Google Scholar 

  • Oluwatuyi M, Kaatz GW, Gibbons S (2004) Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65:3249–3254

    Article  PubMed  CAS  Google Scholar 

  • Orjala J, Erdelmeier CAJ, Wright AD, Rali T, Sticher O (1993) Two chromenes and a prenylated benzoic acid derivative from Piper aduncum. Phytochemistry 34:813–818

    Article  CAS  Google Scholar 

  • Pacher T, Bacher M, Hofer O, Greger H (2001) Stress induced carbazole phytoalexins in Glycosmis species. Phytochemistry 58:129–135

    Article  PubMed  CAS  Google Scholar 

  • Park M, Bae J, Lee DS (2008) Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother Res 22:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Pelloux-Prayer AL, Priem B, Joseleau JP (1998) Kinetic evaluation of conidial germination of Botrytis cinerea by a spectrofluorometric method. Mycol Res 102:320–322

    Article  CAS  Google Scholar 

  • Perez C, Pauli M, Bazerque P (1990) An antibiotic assay by the well agar method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  • Phongmaykin J, Kumamoto T, Ishikawa T, Suttisri R, Saifah E (2008) A new sesquiterpene and other terpenoid constituents of Chisocheton pendulifloru. Arch Pharm Res 31:21–27

    Article  PubMed  CAS  Google Scholar 

  • Pintore G, Usai M, Bradesi P, Juliano C, Boatto G, Tomi F, Chessa M, Cerri R, Casanova J (2001) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavor Fragrance J 17:15–19

    Article  CAS  Google Scholar 

  • Pistelli L, Bertoli A, Lepori E, Morelli I, Panizzi L (2002) Antimicrobial and antifungal activity of crude extracts and isolated saponins from Astragalus verrucosus. Fitoterapia 73:336–339

    Article  PubMed  CAS  Google Scholar 

  • Portillo A, Vila R, Freixa B, Adzet T, Cañigueral S (2001) Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol 76:93–98

    Article  PubMed  CAS  Google Scholar 

  • Portillo A, Vila R, Freixa B, Ferro E, Parello T, Casanova J, Cañigeral S (2005) Phenylethanoid glycosides from Cistanches salsa inhibit apoptosis induced by 1-methyl-4-phenylpyridinium ion in neurons. J Ethnopharmacol 97:49

    Article  PubMed  CAS  Google Scholar 

  • Potterat O, Stoeckli-Evans H, Msonthi JD, Hostettmann K (1987) Two new antifungal naphthoxirene derivatives and their glucosides from Sesamum angolense WELW. Helv Chim Acta 70:1551–1557

    Google Scholar 

  • Prats E, Galindo JC, Bazzalo ME, León A, Macías FA, Rubiales D, Jorrín JV (2007) Antifungal activity of a new phenolic compound from capitulum of a head rot-resistant sunflower genotype. J Chem Ecol 33:1245–1253

    Article  CAS  Google Scholar 

  • Prusky D, Keen NT, Eaks J (1983) Further evidence for the involvement of a pre-formed antifungal compound in the latency of Colletotrichum gloeosporioides on unripe avocado fruits. Physiol Mol Plant Pathol 22:189–198

    CAS  Google Scholar 

  • Ragasa CY, Co AL, Rideout JA (2005) Antifungal metabolites from Blumea balsamifera. Nat Prod Res 19:231–237

    Article  PubMed  CAS  Google Scholar 

  • Rao GX, Zhang S, Wang HM, Li ZM, Gao S, Xu GL (2009) Antifungal alkaloids from the fresh rattan stem of Fibraurea recisa Pierre. J Ethnopharmacol 123:1–5

    Article  PubMed  CAS  Google Scholar 

  • Rasoamiaranjanahary L, Marston A, Guilet D, Schenk K, Randimbivololona F, Hostettmann K (2003) Antifungal diterpenes from Hypoestes serpens (Acanthaceae). Phytochemistry 62:333–337

    Article  PubMed  CAS  Google Scholar 

  • Rastogi RP, Dhawan BN (1982) Research on medicinal plants at the Central Drug Research Institute, Lucknow (India). Indian J Med Res 76:27–45

    PubMed  Google Scholar 

  • RatnayakeBandara BM, Wimalasiri WR (1988) Diterpene alcohols from Croton lacciferus. Phytochemistry 27:225–226

    Article  CAS  Google Scholar 

  • RatnayakeBandara BM, Hewage CM, Karun-aratne V, Wannigama P, Adikaram NKB (1992) An antifungal chromene from Eupatorium riparium. Phytochemistry 31:1983–1985

    Article  Google Scholar 

  • Reuveni M, Tuzun S, Cole JS, Siegel R, Nesmith WC, Kuc J (1987) Removal of duvatrienediols from the surface of tobacco leaves increases their susceptibility to blue mold. Physiol Mol Plant Pathol 30:441

    Article  CAS  Google Scholar 

  • Rukayadi Y, Shim JS, Hwang JK (2008) Screening of Thai medicinal plants for anticandidal activity. Mycoses 51:308–312

    Article  PubMed  Google Scholar 

  • Samy RP (2005) Antimicrobial activity of some medicinal plants from India. Fitoterapia 76:697–699

    Article  PubMed  Google Scholar 

  • Sauton M, Mitaine AC, Miyamoto T, Dongmo A, Lacaille MA (2004) Antifungal steroid saponins from Dioscorea cayenensis. Planta Med 70:90–92

    Article  CAS  Google Scholar 

  • Scher JM, Speakman JB, Zapp J, Becker H (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 65:2583–2588

    Article  PubMed  CAS  Google Scholar 

  • Shain L, Miller JB (1982) Pinocembrin: an antifungal compound secreted by leaf glands of eastern cottonwood. Phytopathology 72:877–880

    Article  CAS  Google Scholar 

  • Skaltsa H, Lazari D, Panagouleas C, Georgiadov E, Garcia B, Sokovic M (2000) Sesquiterpene lactones from Centaurea thessala and Centaurea attica: antifungal activity. Phytochemistry 55:903–908

    Article  PubMed  CAS  Google Scholar 

  • Slobodníková L, Kost’álová D, Labudová D, Kotulová D, Kettmann V (2004) Antimicrobial activity of Mahonia aquifolium crude extract and its major isolated alkaloids. Phytother Res 18:674–676

    Article  PubMed  CAS  Google Scholar 

  • Slusarenko AJ, Longland AC, Whitehead IM (1989) Convenient, sensitive and rapid assay for antibacterial activity of phytoalexins. Bot Halvetica 99:203–207

    Google Scholar 

  • Sohn HY, Son KH, Kwon CS, Kwon GS, Kang SS (2004) Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L. Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11:666–672

    Article  PubMed  CAS  Google Scholar 

  • Soylu EM, Soylu S, Kurt S (2006) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128

    Article  PubMed  CAS  Google Scholar 

  • Spendley PJ, Bird PM, Ride JP, Leworthy DP (1982) Two novel antifungal alka-2,4-dienals from Triticum aestivum. Phytochemistry 21:2403–2404

    Article  CAS  Google Scholar 

  • Springob K, Kutchan TM (2009) Introduction to the different classes of natural products. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products synthesis, function, and application. Springer, New York, pp 3–50

    Chapter  Google Scholar 

  • Stein AC, Alvarez S, Avancini C, Zacchino S, von Poser G (2006) Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol 107:95–98

    Article  PubMed  CAS  Google Scholar 

  • Tahara S, Ingham JL, Nakahara S, Mizutani 1, Harborne JB (1984) Fungitoxic dihydrofurano-isoflavones and related compounds in white lupin, Lupinus albus. Phytochemistry 23:1889–1900

    Article  CAS  Google Scholar 

  • Takasugi M, Kawashima S, Mende K, Katsui N, Masarnune T, Shirata A (1987) Antifungal compounds from Dioscorea batatas inoculated with Pseudomonas cichorii. Phytochemistry 26:371–375

    Article  CAS  Google Scholar 

  • Tayel AA, El-Tras WF (2009) Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method. Mycoses. doi:10.1111/j.1439-0507.2008.01681.x

    PubMed  Google Scholar 

  • Tornas-Barberan FA, Msonthi JD, Hostettmann K (1988) Antifungal epicuticular methylated flavonoids from Helichrysum nitens. Phytochemistry 27:753–755

    Article  Google Scholar 

  • Turchetti B, Pinelli P, Buzzini P, Romani A, Heimler D, Franconi F, Martini A (2005) In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother Res 19:44–49

    Article  PubMed  CAS  Google Scholar 

  • Uma B, Prabhakar K, Rajendran S (2009) Anticandidal activity of Asparagus racemosus. Indian J Pharm Sci 71:342–343

    Article  PubMed  CAS  Google Scholar 

  • Valsaraj R, Pushpangadan P, Smitt UW, Adsersen A, Nyman U (1997) Antimicrobial screening of selected medicinal plants from India. J Ethnopharmacol 58:75–83

    Article  PubMed  CAS  Google Scholar 

  • Vinaya K, Kavitha R, Ananda Kumar CS, Benaka Prasad SB, Chandrappa S, Deepak SA, Nanjunda Swamy S, Umesha S, Rangappa KS (2009) Synthesis and antimicrobial activity of 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl) propyl)piperidine derivatives against pathogens of Lycopersicon esculentum: a structure-activity evaluation study. Arch Pharm Res 32:33–41

    Article  PubMed  CAS  Google Scholar 

  • Viturro CF, Dela-Fuente JR, Maier MS (2004) 5-Methylcoumaranones from Mutisia friesiana and their bioactivity. J Nat Prod 67:778

    Article  PubMed  CAS  Google Scholar 

  • Wachter GA, Hoffmann JJ, Furbacher T, Blake ME, Timmermann BN (1999) Antibacterial and antifungal flavanones from Eysenhardtia texana. Phytochemistry 52:1469–1471

    Article  PubMed  CAS  Google Scholar 

  • Walsh TJ, Gonzalez C, Lyman CA, Chanock SJ, Pizzo PA (1996) Invasive fungal infections in children: recent advances in diagnosis and treatment. Adv Pediatr Infect Dis 11:187–290

    PubMed  CAS  Google Scholar 

  • Webster D, Taschereau P, Belland RJ, Sand S, Rennie RP (2008) Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol 115:140–146

    Article  PubMed  Google Scholar 

  • Wippich C, Wink M (1985) Biological properties of alkaloids. Influence of quinolizidine alkaloids and gramine on the germination and development of powderly mildew, Erysiphe graminis f. sp. hordei. Experientia 41:1477–1479

    Google Scholar 

  • Wong JH, Ng TB (2005a) Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int J Biochem Cell Biol 37:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Ng TB (2005b) Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides 11:2086–2092

    Article  CAS  Google Scholar 

  • Woodward S, Pearce RN (1988) The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong) Carr) to entry of fungal pathogens. Physiol Mol Plant Pathol 33:127

    Article  CAS  Google Scholar 

  • World Health Organization (1998) The World Health report. Life in the 21st century: a vision for all, 2 Measuring health. World Health Organization, Geneva, Switzerland, pp 39–60

    Google Scholar 

  • Wu TC (1994) On the development of antifungal agents: perspective of the US Food and Drug Administration. Clin Infect Dis 19:S54–S58

    Article  PubMed  Google Scholar 

  • Xia L, Ng TB (2004) Actinchinin, a novel antifungal protein from the gold kiwi fruit. Peptides 25:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Kuroyanagi M, Itani T, Matsuura H, Udayama M, Murakama M, Umehara K, Kawhara N (2001) Studies on constituents from Chamaecyparis pisifera and antibacterial activity of diterpenes. Chem Pharm Bull 49:1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Yang MH, Wang JS, Luo JG, Wang XB, Kong LY (2009) Tetranortriterpenoids from Chisocheton paniculatus. J Nat Prod 72:2014–2018

    Article  PubMed  CAS  Google Scholar 

  • Yemele-Bouberte M, Krohn K, Hussain H, Dongo E, Schulz B, Hu Q (2006) Tithoniamarin and tithoniamide: a structurally unique isocoumarin dimer and a new ceramide from Tithonia diversifolia. Nat Prod Res 20:842–849

    Article  PubMed  CAS  Google Scholar 

  • Yoganandam GP, Gowri R, Biswas D (2009) Evaluation of Wedelia Biflora (Linn) D.C for anthelmintic and antimicrobial activity. J Pharm Res 2:375–377

    Google Scholar 

  • Young MCM, Braga MR, Dietrich SMC, Gottlieb HE, Trevisan LMV, Bolzani VS (1992) Fungitoxic non-glycosidic iridoids from Alibertia macrophylla. Phytochemistry 31:3433

    Article  CAS  Google Scholar 

  • Zarnowski R, Suzuki Y, Yamaguchi I, Pietr SJ (2002) Alkylresorcinols in barley (Hordeum vulgare L. distichon) grains. Z Naturforsch 57:57–62

    CAS  Google Scholar 

  • Zheng WF, Tan RX, Yang L, Liu ZL (1996) Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med 62:160–161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Aqil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aqil, F. et al. (2010). Antifungal Activity of Medicinal Plant Extracts and Phytocompounds: A Review. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_19

Download citation

Publish with us

Policies and ethics