Skip to main content

Combinational Antifungal Therapy and Recent Trends in Drug Discovery

  • Chapter
  • First Online:
Combating Fungal Infections

Abstract

Invasive fungal infections are a major problem in immunocompromised patients. This has necessitated an increased interest in the development of new antifungals to treat these life-threatening infections. However, our means of combating fungal infections are still lagging behind those for bacterial infections, due to toxicity and the lower clinical efficacy of available antifungals against some invasive fungal infection. Thus, more efforts are needed in antifungal drug discovery, as well as in developing effective ways of minimizing toxicity and improving delivery of available antifungal drugs. One approach is the effective use of newer antifungal agents in combination therapy against invasive aspergillosis, cryptococcosis and candidiasis. On the other hand, identifying and validating new antifungal drug targets is a prerequisite for new antifungal drug discovery. These new targets might be discovered by both conventional but improved assays and genomic approaches. Also, targeting virulence is expected to be a new paradigm for antifungals. In this chapter, an attempt is made to describe recent progress in combinational therapy and new approaches to antifungal drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afeltra J, Vitale RG, Mouton JW, Verweij PE (2004) Potent synergistic in vitro interaction between nonantimicrobial membraneactive compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole. Antimicrob Agents Chemother 48:1335–1343

    PubMed  CAS  Google Scholar 

  • Agarwal AK, Xu T, Jacob MR, Feng Q, Li XC, Walker LA, Clark AM (2008) Genomic and genetic approaches for the identification of antifungal drug targets. Infect Disord Drug Targets 8:2–15

    PubMed  CAS  Google Scholar 

  • Alksne LE, Projan SJ (2000) Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 11:625–636

    PubMed  CAS  Google Scholar 

  • Anderson AC (2003) The process of structure based drug design. Chem Biol 10:787–797

    PubMed  CAS  Google Scholar 

  • Andes DA (2003) In vivo pharmacodynamic of antifungal drugs in treatment of candidiasis. Antimicrob Agents Chemother 47:1179–1186

    PubMed  CAS  Google Scholar 

  • Andriole VT (1999) Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 44:151–162

    PubMed  CAS  Google Scholar 

  • Arikan S, Lozano-Chiu M, Paetznick V, Rex JH (2002) In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium spp. Antimicrob Agents Chemother 46:245–247

    PubMed  CAS  Google Scholar 

  • Arroyo J, Medoff G, Kobayashi GS (1997) Therapy of murine aspergillosis with amphotericin B in combination with rifampin or 5-fluorocytosine. Antimicrob Agents Chemother 11:21–25

    Google Scholar 

  • Ascencio MA, Gardunco E, Perez-Giraldo C, Blanco MT, Hurtado C, Gomez-Garcia AC (2005) Exposure to therapeutic concentrations of ritonavir, but not saquinavir, reduces secreted aspartyl proteinase of Candida parapsilosis. Chemotherapy 51:252–255

    Google Scholar 

  • Baddley JW, Pappas PG (2005) Antifungal combination therapy: clinical potential. Drugs 65:1461–1480

    PubMed  CAS  Google Scholar 

  • Baddley JW, Pappas PG (2007) Combination antifungal therapy for the treatment of invasive yeast and mold infections. Curr Infect Dis Rep 9:448–456

    PubMed  Google Scholar 

  • Barbaro G, Barbarini G, Di Lorenzo G (1996) Fluconazole vs itraconazole–flucytosine association in the treatment of esophageal candidiasis in AIDS patients. A double-blind, multicenter placebo-controlled study. The Candida esophagitis Multicenter Italian Study (CEMIS) Group. Chest 110:1507–1514

    PubMed  CAS  Google Scholar 

  • Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Giacometti A, Scalise G (1998) In vitro interaction of terbinafine with amphotericin B, fluconazole, and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemother 41:59–65

    PubMed  CAS  Google Scholar 

  • Barrett D (2002) From natural products to clinically useful antifungals. Biochimica et Biophysica Acta 1587:224–233

    PubMed  CAS  Google Scholar 

  • Battinelli L, Canielea C, Cristianib M, Bisiqnanob G, Sajjab A, Mazzantia G (2006) In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine 13:558–563

    PubMed  CAS  Google Scholar 

  • Bava AJ, Negroni R (1992) Comparative study of six antifungal treatments in an experimental model of murine cryptococcosis. Eur J Epidemiol 8:422–426

    PubMed  CAS  Google Scholar 

  • Bays N, Margolis J (2004) Yeast as a budding technology in target validation. Drug Discov Today Tech 1:157–162

    CAS  Google Scholar 

  • Billack B, Santoro M, Lau-Cam C (2009) Growth inhibitory action of ebselen on fluconazole-resistant Candida albicans: role of the plasma membrane H+-ATPase. Microb Drug Resist 15:77–83

    PubMed  CAS  Google Scholar 

  • Birch M, Robson G, Law D, Denning DW (1996) Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect Immun 64:751–755

    PubMed  CAS  Google Scholar 

  • Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, Heitman J (2003) Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell 2:422–430

    PubMed  CAS  Google Scholar 

  • Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4:1574–1582

    PubMed  CAS  Google Scholar 

  • Bok JW, Chung DW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP (2006) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 74:6761–6768

    PubMed  CAS  Google Scholar 

  • Brouwer AE, Rajanuwong A, Chierakul W, Griffin GE, Larsen RA, White NJ, Harrison TS (2004) Combination therapies for HIV associated cryptococcal meningitis: a randomized trial. Lancet 363:1764–1767

    PubMed  CAS  Google Scholar 

  • Bruccoleri R, Dougherty T, Davison D (1998) Concordance analysis of microbial genomes. Nucleic Acids Res 26:4482–4486

    PubMed  CAS  Google Scholar 

  • Brun YF, Dennis CG, Greco WR, Bernacki RJ, Pera PJ, Bushey JJ, Youn RC, White DB, Segal BH (2007) Modeling the combination of amphotericin B, micafungin, and nikkomycin Z against Aspergillus fumigatus in vitro using a novel response surface paradigm. Antimicrob Agents Chemother 51:1804–1812

    PubMed  CAS  Google Scholar 

  • Bruneau JM, Isabelle M, Eric T, Raymond L, Francoise S, Claude F, Jean-Pierre LC, Valerie L, Dominique L, John H (2003) Drug induced proteome changes in Candida albicans: comparison of the effect of β-(1, 3) glucan synthase inhibitors and two triazoles, fluconazole and itraconazole. Proteomics 3:325–336

    PubMed  CAS  Google Scholar 

  • Brush L, Money NP (1999) Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis. Fungal Genet Biol 28:190–200

    PubMed  CAS  Google Scholar 

  • Cabib E, Roberts RL, Bowers B (1982) Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem 51:763–793

    PubMed  CAS  Google Scholar 

  • Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of biological structure. Microbial Sci 5:370–375

    CAS  Google Scholar 

  • Cacciapuoti A, Halpern J, Mendrick C, Norris C, Patel R, Loebenberg D (2006) Interaction between posaconazole and caspofungin in concomitant treatment of mice with systemic Aspergillus infection. Antimicrob Agents Chemother 50:2587–2590

    PubMed  CAS  Google Scholar 

  • Cauda R, Tacconelli E, Tumbarello M, Morace G, De Bernardis F, Torosantucci A, Cassone A (1999) Role of protease inhibitors in preventing recurrent oral candidosis in patients with HIV infection: a prospective case-control study. J Aquir Immune Def Syndr 21:20–25

    CAS  Google Scholar 

  • Cha R, Sobel JD (2004) Fluconazole for the treatment of candidiasis: 15 years experience. Expert Rev Anti Infect Ther 2:357–366

    PubMed  CAS  Google Scholar 

  • Chaturvedi V, Ramani R, Ghannoum MA, Killian SB, Holliday N, Knapp C, Ostrosky-Zeichner L, Messer SA, Pfaller MA, Iqbal NJ, Arthington-Skaggs BA, Vazquez JA, Sein T, Rex JH, Thomas J, Walsh TJ (2008) Multilaboratory testing of antifungal combinations against a quality control isolate of Candida krusei. Antimicrob Agents Chemother 52:1500–1502

    PubMed  CAS  Google Scholar 

  • Conway T, Schoolnik GK (2003) Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol 47:879–889

    PubMed  CAS  Google Scholar 

  • Cramer RA Jr, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ (2008) Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Cuenca-Estrella M (2004) Combinations of antifungal agents in therapy — what value are they? J Antimicrob Chemother 54:854–869

    PubMed  CAS  Google Scholar 

  • Cuenca-Estrella M, Gomez-Lopez A, Garcia-Effron G, Alcazar-Fuoli L, Mellado E, Buitrago MJ, Rodriguez-Tudela JL (2005) Combined activity in vitro of caspofungin, amphotericin azole agents against Itraconazole-resistant clinical isolates of Aspergillus fumigatus. Antimicrob Agents Chemother 49:1232–1235

    PubMed  CAS  Google Scholar 

  • Dannaoui E, Afeltra J, Meis JFGM, Verweij PE, Network E (2002) In vitro susceptibilities of zygomycetes to combinations of antimicrobial agents. Antimicrob Agents Chemother 46:2708–2711

    PubMed  CAS  Google Scholar 

  • Dannaoui E, Lortholary O, Dromer F (2004) In vitro evaluation of double and triple combinations of antifungal drugs against Aspergillus fumigatus and Aspergillus terreus. Antimicrob Agents Chemother 48:970–978

    PubMed  CAS  Google Scholar 

  • de Backer MD, Van Dijck P (2003) Progress in functional genomics approaches to antifungal drug target discovery. Trends Microbiol 11:470–478

    PubMed  Google Scholar 

  • de Backer MD, Itliyana T, Ma XJ, Vandononick S, Luyten WHML, Bossche V (2001a) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670

    PubMed  Google Scholar 

  • de Backer MD, Nelissen B, Logghe M, Viaene J, Loonen I, Vandoninck S, de Hoogt R, Dewaele S, Simons FA, Verhasselt P, Vanhoof G, Contreras F, Luyten WHML (2001b) An antisense based functional genomics approach for identification of genes critical for growth of Candida albicans. Nat Biotechnol 19:235–241

    PubMed  Google Scholar 

  • de Backer MD, Van Dijck P, Luyten WH (2002) Functional genomics approaches for the identification and validation of antifungal drug targets. Am J Pharmacogenomics 2:113–127

    PubMed  Google Scholar 

  • de Groot PW, Tam AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    PubMed  Google Scholar 

  • Denning DW, Hanson LH, Perlman AM, Stevens DA (1992) In vitro susceptibility and synergy studies of Aspergillus species to conventional and new agents. Diagn Microbial Infect Dis 15:21–34

    CAS  Google Scholar 

  • Denning DW, Kibbler CC, Barnes RA (2003) British Society for Medical Mycology proposed standards of care for patients with invasive fungal infections. Lancet Infect Dis 3:230–240

    PubMed  Google Scholar 

  • Dismukes WE (2000) Introduction to antifungal drugs. Clin Infect Dis 30:653–657

    PubMed  CAS  Google Scholar 

  • Dominguez JM, Martin JJ (1998) Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42:2279–2283

    PubMed  CAS  Google Scholar 

  • Duchini A, Redfield DC, McHutchison JG, Brunson ME, Pockros PJ (2002) Aspergillosis in liver transplant recipients: successful treatment and improved survival using a multistep approach. South Med J 95:897–899

    PubMed  Google Scholar 

  • Eliopoulos GM, Moellering RC (1991) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine, 3rd edn. Williams & Wilkins, Baltimore, MD, pp 432–492

    Google Scholar 

  • Enjalbert B, Nantel A, Whiteway M (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14:1460–1467

    PubMed  CAS  Google Scholar 

  • Espinel-Ingroff A (2009) Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005-2009). Rev Iberoam Micol 26:15–22

    PubMed  Google Scholar 

  • Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10:S274–S276

    PubMed  Google Scholar 

  • Firon A, Villalba F, Beffa R, d’Enfert C (2003) Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukaryot Cell 2:247–255

    PubMed  CAS  Google Scholar 

  • Fohrer C, Fornecker L, Nivoix Y, Cornila C, Marinescu C, Herbrecht R (2006) Antifungal combination treatment: a future perspective. Int J Antimicrob Agents 27S:S25–S30

    Google Scholar 

  • Ganendren R, Widmer F, Singhal V, Wilson C, Sorrell T, Wright L (2004) In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob Agents Chemother 48:1561–1569

    PubMed  CAS  Google Scholar 

  • Gauwerky K, Boreli C, Korting HC (2009) Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14:214–222

    PubMed  CAS  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 12:122–143

    Google Scholar 

  • Girmenia C, Venditti M, Martino P (2003) Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis 46:227–231

    PubMed  CAS  Google Scholar 

  • Gorlach JM, McDade HC, Perfect JR, Cox GM (2002) Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. Microbiology 148:213–219

    PubMed  CAS  Google Scholar 

  • Guembe M, Guinea J, Pelaz T, Torres-Narbona M, Bouza E (2007) Synergistic effect of posaconazole and caspofungin against clinical zygomycetes. Antimicrob Agents Chemother 51:3457–3458

    PubMed  CAS  Google Scholar 

  • Guo Q, Sun S, Yu J, Li Y, Cao L (2008) Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods. J Med Microbiol 57:457–462

    PubMed  CAS  Google Scholar 

  • Haselbeck R, Wall D, Jiang B, Ketela T, Zyskind J, Bussey H, Foulkes JG, Roemer T (2002) Comprehensive essential gene identification as a platform for novel anti-infective drug discovery. Curr Pharm Des 8:1155–1172

    PubMed  CAS  Google Scholar 

  • Heyn K, Tredup A, Salvenmoser S, Muller FMC (2005) Effect of voriconazole combined with micafungin against Candida, Aspergillus, and Scedosporium spp. and Fusarium solani. Antimicrob Agents Chemother 49:5157–5159

    PubMed  CAS  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    PubMed  CAS  Google Scholar 

  • Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3:0001–0015

    Google Scholar 

  • Huai Q, Kim HY, Liu Y, Zhao Y, Mondragon A, Liu JO, Ke H (2002) Crystal structure of calcineurin–cyclophilin–cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc Natl Acad Sci USA 99:12037–12042

    PubMed  CAS  Google Scholar 

  • Huffnagle GB, Chen GH, Curtis JL, McDonald RA, Strieter RM, Toews GB (1995) Down regulation of the afferent phase of T cell mediated pulmonary inflammation and immunity by a high melanin producing strain of Cryptococcus neoformans. J Immunol 155:3507–3516

    PubMed  CAS  Google Scholar 

  • Idnurm A, Reedy JL, Nussbaum JC, Heitman J (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryotic Cell 3:420–429

    PubMed  CAS  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A, Reedy JL, Heitman J (2009) Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryotic Cell 8:315–326

    PubMed  CAS  Google Scholar 

  • Jiang B, Bussey H, Roemer T (2002) Novel strategies in antifungal lead discovery. Curr Opin Microbiol 5:466–471

    PubMed  CAS  Google Scholar 

  • Johnson MD, Perfect JR (2007) Combination antifungal therapy: what can and should we expect? Bone Marrow Transplant 40:297–306

    PubMed  CAS  Google Scholar 

  • Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH (2004) Combination antifungal therapy. Antimicrob Agents Chemother 48:693–715

    PubMed  CAS  Google Scholar 

  • Jones BD, Falkow S (1996) Salmonellosis: Host immune responses and bacterial virulence determinants. Annu Rev Immunol 14:533–561

    PubMed  CAS  Google Scholar 

  • Kato-Maeda M, Gao Q, Small PM (2001) Microarray analysis of pathogens and their interaction with hosts. Cell Microbiol 3:713–719

    PubMed  CAS  Google Scholar 

  • Kauffman CA (2001) Fungal infections in older adults. Clin Infect Dis 33:550–555

    PubMed  CAS  Google Scholar 

  • Keele DJ, DeLallo VC, Lewis RE, Ernst EJ, Klepser ME (2001) Evaluation of amphotericinn B and flucytosine in combination against Candida albicans and Cryptococcus neoformans using time kill methodology. Diagn Microbiol Infect Dis 14:121–126

    Google Scholar 

  • Klis FM (1994) Cell wall assembly in yeast. Yeast 10:851–869

    PubMed  CAS  Google Scholar 

  • Kontoyiannis DP, Lewis RE, Osherov N, Albert ND, May GS (2003) Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J Antimicrob Chemother 51:313–316

    PubMed  CAS  Google Scholar 

  • Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67:6652–6662

    PubMed  CAS  Google Scholar 

  • Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA 99:14907–14912

    PubMed  CAS  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    PubMed  CAS  Google Scholar 

  • Larsen RA, Leal ME, Chan LS (1990) Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS: a randomized trial. Ann Intern Med 113:183–187

    PubMed  CAS  Google Scholar 

  • Latge JP (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382–389

    PubMed  CAS  Google Scholar 

  • Lewis RE, Kontoyiannis DP (2001) Rationale for combination antifungal therapy. Pharmacotherapy 21:S149–S164

    Google Scholar 

  • Lewis RE, Kontoyiannis DP (2005) Micafungin in combination with voriconazole in Aspergillus species: a pharmacodynamic approach for detection of combined antifungal activity in vitro. J Antimicrob Chemother 56:887–892

    PubMed  CAS  Google Scholar 

  • Li Y, Sun S, Guo Q, Ma L, Shi C, Su L, Li H (2008) In vitro interaction between azoles and cyclosporin A against clinical isolates of Candida albicans determined by the chequerboard method and time-kill curves. J Antimicrob Chemother 61:577–585

    PubMed  CAS  Google Scholar 

  • Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    PubMed  CAS  Google Scholar 

  • Liu H, Cottrell TR, Pierini LM, Goldman WE, Doering TL (2002) RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160:463–470

    PubMed  CAS  Google Scholar 

  • Liu TT, Lee REB, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    PubMed  CAS  Google Scholar 

  • Liu M, Healy MD, Dougherty BA, Esposito KM, Maurice TC, Mazzucco CE, Bruccoleri RE, Davison DB, Frosco M, Barrett JF, Wang YK (2006) Conserved fungal genes as potential targets for broad-spectrum antifungal drug discovery. Eukaryotic Cell 5:638–649

    PubMed  CAS  Google Scholar 

  • Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86

    PubMed  CAS  Google Scholar 

  • Magill SS, Shields C, Sears CL, Choti M, Merz WG (2006) Triazole cross resistance among Candida spp.: case report, occurrence among bloodstream isolates, and implications for antifungal therapy. J Clin Microbiol 44:529–535

    PubMed  CAS  Google Scholar 

  • Mare L, Iatta R, Montagna MT, Luberto C, Poeta MD (2005) APP1 transcription is regulated by IPC1-DAG pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans. J Biol Chem 280:36055–36064

    PubMed  CAS  Google Scholar 

  • Marinelli F (2009) Chapter 2. From microbial products to novel drugs that target a multitude of disease indications. Methods Enzymol 458:29–58

    PubMed  CAS  Google Scholar 

  • Mayanja-Kizza H, Oishi K, Mitarai S, Yamashita H, Nalongo K, Watanabe K, Izumi T, Ococi-Jungala AK, Mugerwa R, Nagatake T, Matsumoto K (1998) Combination therapy with fluconazole and flucytosine for cryptococcal meningitis in Ugandan patients with AIDS. Clin Infect Dis 26:1362–1366

    PubMed  CAS  Google Scholar 

  • Medoff G (1983) Antifungal action of rifampin. Rev Infect Dis 5(Suppl 3):S614–S619

    PubMed  CAS  Google Scholar 

  • Meletiadis J, Mouton JW, Meis JFGM, Verweij PE (2003) In vitro drug interaction modelling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother 47:106–117

    PubMed  CAS  Google Scholar 

  • Meletiadis J, Stergiopoulou T, O’Shaughnessy EM, Peter J, Walsh TJ (2007) Concentration-dependent synergy and antagonism within a triple antifungal drug combination against Aspergillus species: analysis by a new response surface model. Antimicrob Agents Chemother 51:2053–2064

    PubMed  CAS  Google Scholar 

  • Mirbod F, Banno Y, Ghannoum MA, Ibrahim AS, Nakashima S, Kitajima Y, Cole GT, Nozawa Y (1995) Purification and characterization of lysophospholipasetransacylase (h-LPTA) from a highly virulent strain of Candida albicans. Biochim Biophys Acta 1257:181–188

    PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Differential expression of Candida albicans phospholipase B (PLB1) under various environmental and physiological conditions. Microbiology 149:261–267

    PubMed  CAS  Google Scholar 

  • Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, Hoog MVH, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Cell Biol 13:3452–3455

    CAS  Google Scholar 

  • Navarathna DHMLP, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW (2005) Enhanced pathogenicity of Candida albicans pretreated with sub inhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56:1156–1159

    PubMed  CAS  Google Scholar 

  • Niimi M, Cannon RD, Monk BC (1999) Candida albicans pathogenicity: a proteomic perspective. Electrophoresis 20:2299–2308

    PubMed  CAS  Google Scholar 

  • Nishi I, Sunada A, Toyokawa M, Asari S, Iwatani Y (2009) In vitro antifungal combination effects of micafungin with fluconazole, voriconazole, amphotericin B, and flucytosine against clinical isolates of Candida species. J Infect Chemother 15:1–5

    PubMed  CAS  Google Scholar 

  • O’Shaughnessy EM, Meletiadis J, Stergiopoulou T, Demchok JP, Walsh TJ (2006) Antifungal interactions within the triple combination of amphotericin B, caspofungin and voriconazole against Aspergillus species. J Antimicrob Chemother 58:1168–1176

    PubMed  Google Scholar 

  • Odds FC (2003a) Reflections on the question: what does molecular mycology have to do with the clinician treating the patient? Med Mycol 41:1–6

    PubMed  CAS  Google Scholar 

  • Odds FC (2003b) Synergy, antagonism and what the chequerboard puts between them. J Antimicrob Chemother 52:1

    PubMed  CAS  Google Scholar 

  • Odds FC (2005) Genomics, molecular targets and the discovery of antifungal drugs. Rev Iberoam Micol 22:229–237

    PubMed  Google Scholar 

  • Oehlschlager AC, Czyzewska E (1992) Rationally designed inhibitors for sterol biosynthesis. In: Sutcliffe J, Georgopapadakao N (eds) Emerging Targets in Antibacterial and Antifungal Chemotherapy. Chapman and Hall, New York, pp 437–475

    Google Scholar 

  • Oliveira ER, Fothergill AW, Kirkpatrick WR, Coco BJ, Patterson TF, Redding SW (2005) In vitro interaction of posaconazole and caspofungin against clinical isolates of Candida glabrata. Antimicrob Agents Chemother 49:3544–3545

    PubMed  CAS  Google Scholar 

  • Ollert MW, Wende C, Gorlich M, McMullan-Vogel CG, Zepelin MB, Vogel CW, Korting HC (1995) Increased expression of Candida albicans secretory proteinase, a virulence factor, in isolates from human immunodeficiency virus positive patients. J Clin Microbiol 33:2543–2549

    PubMed  CAS  Google Scholar 

  • Onyewu C, Blankenship JR, Poeta DM, Heitman J (2003) Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47:956–964

    PubMed  CAS  Google Scholar 

  • Pardini G, De Groot PWJ, Coste AT, Karababa M, Klis FM, de Koster CG, Sanglard D (2006) The CRH family coding for cell wall GPI proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J Biol Chem 281:40399–40411

    PubMed  CAS  Google Scholar 

  • Paris S, Wysong D, Debeaupuis JP, Shibuya K, Philippe B, Diamond RD, Latge JP (2003) Catalases of Aspergillus fumigatus. Infect Immun 71:3551–3562

    PubMed  CAS  Google Scholar 

  • Perfect JR (1996) Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob Agents Chemother 40:1577–1583

    PubMed  CAS  Google Scholar 

  • Polak A (1978) Synergism of polyene antibiotics with 5-fluorocytosine. Chemotherapy 24:2–16

    PubMed  CAS  Google Scholar 

  • Polak A (1988) Combination therapy with antifungal drugs. Mycoses 31(Suppl 2):S45–S53

    Google Scholar 

  • Projan SJ, Youngman PJ (2002) Antimicrobials: new solutions badly needed. Curr Opin Microbiol 5:463–465

    PubMed  Google Scholar 

  • Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S, Brass C, Vazquez JA, Chapman SW, Horowitz HW, Zervos M, McKinsey D, Lee J, Babinchak T, Bradsher RW, Cleary JD, Cohen DM, Danziger L, Goldman M, Goodman J, Hilton E, Hyslop NE, Kett DH, Lutz J, Rubin RH, Scheld WM, Schuster M, Simmons B, Stein DK, Washburn RG, Mautner L, Chu TC, Panzer H, Rosenstein RB, Booth J, National Institute of Allergy and Infectious Diseases Mycoses Study Group (2003) A randomized and blinded multicenter trial of high dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in non neutropenic subjects. Clin Infect Dis 36:1221–1228

    PubMed  CAS  Google Scholar 

  • Rieger CT, Ostermann H, Kolb HJ, Fiegl M, Huppmann S, Morgenstern N, Tischer J (2008) A clinical cohort trial of antifungal combination therapy: efficacy and toxicity in haematological cancer patients. Ann Hematol 87:915–922

    PubMed  CAS  Google Scholar 

  • Rodaki A, Young T, Brown AJP (2006) Effects of depleting the essential central metabolic enzyme, fructose-1, 6-bisphosphate aldolase, upon the growth and viability of Candida albicans: implications for antifungal drug target discovery. Eukaryot Cell 5:1371–1377

    PubMed  CAS  Google Scholar 

  • Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181

    PubMed  CAS  Google Scholar 

  • Rubin MA, Carroll KC, Cahill BC (2002) Caspofungin in combination with itraconazole for the treatment of invasive aspergillosis in humans. Clin Infect Dis 34:1160–1161

    PubMed  Google Scholar 

  • Saag MS, Powderly WG, Cloud GA, Robinson P, Grieco MH, Sharkey PK, Thompson SE, Sugar AM, Tuazon CU, Fisher JF et al (1992) Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. N Engl J Med 326:83–89

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sandovsky-Losica H, Shwartzman R, Lahat Y, Segal E (2008) Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J Antimicrob Chemother 62:635–637

    PubMed  CAS  Google Scholar 

  • Sangamwar AT, Deshpande UD, Pekamwar SS (2008) Antifungals: need to search for a new molecular target. Indian J Pharmaceut Sci 70:423–430

    CAS  Google Scholar 

  • Selitrennikoff CP, Alex L, Miller TK, Clemons KV, Simon MI, Stevens DA (2001) COS-I, a putative two component histidine kinase of Candida albicans, is an in vivo virulence factor. Med Mycol 39:69–74

    PubMed  CAS  Google Scholar 

  • Singh N, Limaye AP, Forrest G, Safdar N, Muñoz P, Pursell K, Houston S, Rosso F, Montoya JG, Patton P, Del Busto R, Aguado JM, Fisher RA, Klintmalm GB, Miller R, Wagener MM, Lewis RE, Kontoyiannis DP, Husain S (2006) Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation 81:320–326

    PubMed  CAS  Google Scholar 

  • Smego RA, Perfect JR, Durack DT (1984) Combined therapy with amphotericin B and 5-fluorocytosine for Candida meningitis. Rev Infect Dis 6:791–801

    PubMed  Google Scholar 

  • Spaltmann F, Blunck M, Ziegelbauer K (1999) Computer-aided target selection — prioritizing targets for antifungal drug discovery. Drug Discov Today 4:17–26

    PubMed  CAS  Google Scholar 

  • Stahura FL, Bajorath J (2001) Bio and chemo informatics beyond data management: crucial challenges and future opportunities. Drug Discov Today 7:S41–S47

    Google Scholar 

  • Stergiopoulou T, Meletiadis J, Sein T, Papaioannidou P, Tsiouris I, Roilides E, Walsh JT (2008) Isobolographic analysis of pharmacodynamic interactions between antifungal agents and ciprofloxacin against Candida albicans and Aspergillus fumigatus. Antimicrob Agents Chemother 52:2196–2204

    PubMed  CAS  Google Scholar 

  • Sugar AM (1995) Use of amphotericin B with azole antifungal drugs: what are we doing? Antimicrob Agent Chemother 39:1907–1912

    CAS  Google Scholar 

  • Sugar AM, Hitchcock CA, Troke PF, Picard M (1995) Combination therapy of murine invasive candidiasis with fluconazole and amphotericin B. Antimicrob Agents Chemother 39:598–601

    PubMed  CAS  Google Scholar 

  • Sugimoto Y, Sakoh H, Yamada K (2004) IPC synthase as a useful target for antifungal drugs. Curr Drug Targets Infect Disord 4:311–322

    PubMed  CAS  Google Scholar 

  • Sugui JA, Pardo J, Chang YC, Mullbacher A, Zarember KA, Galvez EM, Brinster L, Zerfas P, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Role of laeA in the regulation of alb1, gliP, conidial morphology, and virulence in Aspergillus fumigatus. Eukaryot Cell 6:1552–1561

    PubMed  CAS  Google Scholar 

  • Sun S, Li Y, Guo Q, Shi C, Yu J, Ma L (2008) In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother 52:409–417

    PubMed  CAS  Google Scholar 

  • Sun L, Sun S, Cheng A, Wu X, Zhang Y, Lou H (2009) In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans. Antimicrob Agents Chemother 53:1586–1591

    PubMed  CAS  Google Scholar 

  • Te Dorsthorst DTA, Verweij PE, Meletiadis J, Bergervoet M, Punt NC, Meis JFGM, Mouton JW (2002) In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach. Antimicrob Agents Chemother 46:2982–2989

    PubMed  CAS  Google Scholar 

  • Thakur RK, Skelcy KM, Kahn RN, Cannon L, Cherukuri R (1994) Successful treatment of Candida prosthetic valve endocarditis with a combination of fluconazole and amphotericin B. Crit Care Med 22:712–714

    PubMed  CAS  Google Scholar 

  • Truan G, Epinat JC, Rougeulle C, Cullin C, Pompon D (1994) Cloning and characterization of a yeast cytochrome b5 encoding gene which suppresses ketoconazole hypersensitivity in a NADPH P-450 reductase deficient strain. Gene 142:123–127

    PubMed  CAS  Google Scholar 

  • Vazquez JA (2007) Combination antifungal therapy: the new frontier. Future Microbiol 2:115–139

    PubMed  CAS  Google Scholar 

  • Vitale RG, Afeltra J, De Hoog GS, Rijs AJ, Verweij PE (2003) In vitro activity of amphotericin B and itraconazole in combination with flucytosine, sulfadiazine and quinolones against Exophiala spinifera. J Antimicrob Chemother 51:1297–1300

    PubMed  CAS  Google Scholar 

  • Walsh TJ, Viviani MA, Arathoon E, Chiou C, Ghannoum M, Groll AH, Odds FC (2000) New targets and delivery systems for antifungal therapy. Med Mycol 38:335–347

    PubMed  CAS  Google Scholar 

  • Weig M, Brown AJP (2007) Genomics and the development of new diagnostics and anti-Candida drugs. Trends Microbiol 15:310–317

    PubMed  CAS  Google Scholar 

  • Willins DA, Kessler M, Walker SS, Reyes GR, Cottarel G (2002) Genomics strategies for antifungal drug discovery — from gene discovery to compound screening. Curr Pharm Des 8:1137–1154

    PubMed  CAS  Google Scholar 

  • Wirk B, Wingard JR (2008) Combination antifungal therapy: from bench to bed side. Curr Fungal infect Rep 2:43–48

    Google Scholar 

  • Wu T, Wright K, Hurst SF, Morrison CJ (2000) Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in sub inhibitory concentrations of fluconazole. Antimicrob Agents Chemother 4:1200–1208

    Google Scholar 

  • Xu D, Jiang B, Ketela T, Lemieux S, Veillette K, Martel N, Davison J, Sillaots S, Trosok S, Bachewich C, Bussey H, Youngman P, Roemer T (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3:835–848

    CAS  Google Scholar 

  • Yang J, Wan Z, Wang X, Liu W, Li R (2009) In vitro Interactions between antifungals and methotrexate against Aspergillus spp. Mycopathologia 168:237–242

    PubMed  CAS  Google Scholar 

  • Zaas AK, Steinbach WJ (2005) Micafungin: The US perspective. Exp Rev Anti Infect Ther 3:183–190

    CAS  Google Scholar 

  • Zhang JD, Xu Z, Cao YB, Chen HS, Yan L, An MM, Gao PH, Wang Y, Jia XM, Jiang YY et al (2006) Antifungal activities and action mechanisms of compounds from Tribulus terrestris L. J Ethnopharmacol 103:76–84

    PubMed  CAS  Google Scholar 

  • Zingman BS (1996) Resolution of refractory AIDS-related mucosal candidiasis after initiation of didanosine plus saquinavir. New Engl J Med 334:1674–1675

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahmad, I. et al. (2010). Combinational Antifungal Therapy and Recent Trends in Drug Discovery. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_10

Download citation

Publish with us

Policies and ethics