Skip to main content

Application of RNA Interference to Treat Conditions Associated with Dysregulation of Transient Receptor Potential Vanilloid 1 Channel

  • Chapter
  • First Online:
RNA Technologies and Their Applications

Part of the book series: RNA Technologies ((RNATECHN))

  • 1498 Accesses

Abstract

Transient receptor potential vanilloid 1 (TRPV1) is a member of the transient receptor potential (TRP) family of proteins and is most notably the target of capsaicin, the active ingredient of “hot” pepper such as jalapeño and habanero. The channel is expressed primarily in small diameter neurons (Aδ and C fibers) within sensory ganglia comprising the pain pathway but expression is observed in larger diameter neurons under conditions of inflammation. TRPV1 is a nonselective cation channel, which responds to heat (activation threshold ∼43°C) and transmits pain sensations in response to noxious heat. It is also expressed in nonneuronal tissue such as keratinocytes, bladder uroepithelium, knee joints, the gastrointestinal tract and the cochlea, suggesting additional physiological roles of channel activation. Several disease states associated with dysregulation of TRPV1 include visceral and peripheral inflammatory pain observed in irritable bowel disease, bone cancers, arthritis and bladder inflammation. Other conditions include diabetic peripheral neuropathy, obesity, and drug-induced hearing loss. Animal studies have shown beneficial effects of targeting TRPV1, using both agonist and antagonist drugs, in the treatment of some of these conditions. However, the propensity of TRPV1 antagonists to produce hyperthermia could limit their future application. Such problems might be resolved by the focal administration of short interfering (si) RNA to the affected organ in order to reduce TRPV1 expression. While demonstration of TRPV1 knockdown by RNA interference (RNAi) is widely used in vitro, results obtained from a limited number of in vivo studies suggest that RNAi could be applied to the treatment of diseases associated with TRPV1 hyperactivity. To date, RNAi has proven beneficial in reducing inflammatory pain and in treating hearing loss associated with cisplatin chemotherapy. This review will focus on the current progress of RNAi in the treatment of diseases associated with TRPV1 dysfunction, discuss potential future applications of this technology, and highlight factors that could affect its use clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TRPV1:

Transient receptor potential vanilloid 1

CGRP:

Calcitonin gene-related peptide

BCTC:

N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox amide

shRNA:

Short hairpin RNA

ROS:

Reactive oxygen species

siRNA:

Short interfering RNA

IL:

Interleukin

TNF-α:

Tumor necrosis factor-α

NK:

Neurokinin 1

NF-κB:

Nuclear factor κB

AP-1:

Activator protein 1

SB366791:

N-(3-Methoxyphenyl)-4-chlorocinnamide

References

  • Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434

    Article  PubMed  CAS  Google Scholar 

  • Al-Hayani A, Davies SN (2002) Effect of cannabinoids on synaptic transmission in the rat hippocampal slice is temperature-dependent. Eur J Pharmacol 442:47–54

    Article  PubMed  CAS  Google Scholar 

  • Amaya F, Oh-hashi K, Naruse Y et al (2003) Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 963:190–196

    Article  PubMed  CAS  Google Scholar 

  • Apostolidis A, Brady CM, Yiangou Y et al (2005) Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65:400–405

    Article  PubMed  Google Scholar 

  • Birder LA, Kanai AJ, de Groat WC et al (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci 98:13396–13401

    Article  PubMed  CAS  Google Scholar 

  • Bíró T, Maurer M, Modarres S et al (1998) Characterization of functional vanilloid receptors expressed by mast cells. Blood 9:1332–1340

    Google Scholar 

  • Bölcskei K, Helyes Z, Szabó A et al (2005) Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 117:368–376

    Article  PubMed  Google Scholar 

  • Brady CM, Apostolidis AN, Harper M et al (2004) Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int 93:770–776

    Article  PubMed  CAS  Google Scholar 

  • Brand LM, Skare KL, Loomans MF et al (1990) Anti-inflammatory pharmacology and mechanism of the orally active capsaicin analogs, NE-19550 and NE-28345. Agents Actions 31:329–340

    Article  PubMed  CAS  Google Scholar 

  • Campbell KC, Meech RP, Klemens JJ et al (2007) Prevention of noise- and drug-induced hearing loss with d-methionine. Hear Res 226:92–103

    Article  PubMed  CAS  Google Scholar 

  • Carlton SM, Coggeshall RE (2001) Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neurosci Lett 310:53–56

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  • Chancellor MB, de Groat WC (1999) Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder. J Urol 162:3–11

    Article  PubMed  CAS  Google Scholar 

  • Charrua A, Cruz CD, Narayanan S et al (2009) GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J Urol 181:379–386

    Article  PubMed  CAS  Google Scholar 

  • Christoph T, Grünweller A, Mika J et al (2006) Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun 350:238–243

    Article  PubMed  CAS  Google Scholar 

  • Christoph T, Bahrenberg G, De Vry J et al (2008) Investigation of TRPV1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice. Mol Cell Neurosci 37:579–589

    Article  PubMed  CAS  Google Scholar 

  • Cruz CD, Charrua A, Vieira E et al (2008) Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp Neurol 214:301–308

    Article  PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ et al (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  PubMed  CAS  Google Scholar 

  • Dinis P, Charrua A, Avelino A et al (2004a) Intravesical resiniferatoxin decreases spinal c-foc expression and increases bladder volume to reflex micturition in rats with chronic inflamed urinary bladder. BJU Int 94:153–157

    Article  PubMed  Google Scholar 

  • Dinis P, Charrua A, Avelino A et al (2004b) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24:11253–11263

    Article  PubMed  CAS  Google Scholar 

  • Engler A, Aeschlimann A, Simmen BR et al (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) in synovial fibroblasts from patients with osteoarthritis and rheumatoid arthritis. Biochem Biophys Res Commun 359:884–888

    Article  PubMed  CAS  Google Scholar 

  • Facer P, Casula MA, Smith GD et al (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11

    Article  PubMed  Google Scholar 

  • Fernihough J, Gentry C, Bevan S et al (2005) Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett 388:75–80

    Article  PubMed  CAS  Google Scholar 

  • Gavva NR, Bannon AW, Hovland DN Jr et al (2007) Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 323:128–137

    Article  PubMed  CAS  Google Scholar 

  • Gavva NR, Treanor JJ, Garami A et al (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136:202–210

    Article  PubMed  CAS  Google Scholar 

  • Hautkappe M, Roizen MF, Toledano A et al (1998) Review of the effectiveness of capsaicin for painful cutaneous disorders and neural dysfunction. Clin J Pain 14:97–106

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280:618–627

    PubMed  CAS  Google Scholar 

  • Honore P, Wismer CT, Mikusa J et al (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther 314:410–421

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Shibata M, Kiyohara T et al (1988) Responses of anterior hypothalamic-preoptic thermosensitive neurons to locally applied capsaicin. Neuropharmacology 27:135–142

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Sun WW, Zhao XT et al (2008) TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization. Biochem Biophys Res Commun 369:989–993

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka O, Igawa Y, Mattiasson A et al (1994) Capsaicin-induced bladder hyperactivity in normal conscious rats. J Urol 152:525–530

    PubMed  CAS  Google Scholar 

  • Jarreau PH, D'Ortho MP, Boyer V et al (1994) Effects of capsaicin on the airway responses to inhaled endotoxin in the guinea pig. Am J Crit Care Med 149:128–133

    CAS  Google Scholar 

  • Joe B, Lokesh BR (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochem Biophys Acta 1224:255–263

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Nakazato E, Fujiuchi A (2005) Involvement of an increased spinal TRPV1 sensitization through its up-regulation in mechanical allodynia of CCI rats. Neuropharmacology 49:977–984

    Article  PubMed  CAS  Google Scholar 

  • Keeble J, Russell F, Curtis B et al (2005) Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum 52:3248–3256

    Article  PubMed  CAS  Google Scholar 

  • Kochukov MY, McNearney TA, Fu Y et al (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 291:C424–C432

    Article  PubMed  CAS  Google Scholar 

  • Kopke RD, Liu W, Gabaizadeh R et al (1997) Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am J Otol 18:559–571

    PubMed  CAS  Google Scholar 

  • Lam FY, Ferrell WR (1991) Specific neurokinin receptors mediate plasma extravasation in the rat knee joint. Br J Pharmacol 103:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Lambert N, Lescoulie PL, Yassine-Diab B et al (1998) Substance P enhances cytokine-induced vascular cell adhesion molecule-1 (VCAM-1) expression on cultured rheumatoid fibroblast-like synoviocytes. Clin Exp Immunol 113:269–275

    Article  PubMed  CAS  Google Scholar 

  • Lecci A, Giuliani S, Santicioli P et al (1994) Involvement of spinal tachykinin NK1 and NK2 receptors in detrusor hyperreflexia during chemical cystitis in anaesthetized rats. Eur J Pharmacol 259:129–135

    Article  PubMed  CAS  Google Scholar 

  • Liddle RA (2007) The role of transient receptor potential vanilloid 1 (TRPV1) channels in pancreatitis. Biochim Biophys Acta 1772:869–878

    Article  PubMed  CAS  Google Scholar 

  • MacLean DB (1985) Abrogation of peripheral cholecystokinin-satiety in the capsaicin treated rat. Regul Pept 11:321–333

    Article  PubMed  CAS  Google Scholar 

  • Marincsák R, Tóth BI, Czifra G et al (2009) Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis 15:328–335

    Article  PubMed  Google Scholar 

  • Marinelli S, Vaughan CW, Christie MJ et al (2002) Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J Physiol 543:531–540

    Article  PubMed  CAS  Google Scholar 

  • Marinelli S, Di Marzo V, Berretta N et al (2003) Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J Neurosci 23:3136–3144

    PubMed  CAS  Google Scholar 

  • Motter AL, Ahern GP (2008) TRPV1-null mice are protected from diet-induced obesity. FEBS Lett 582:2257–2262

    Article  PubMed  CAS  Google Scholar 

  • Mukherjea D, Jajoo S, Whitworth C et al (2008) Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci 28:13056–13065

    Article  PubMed  CAS  Google Scholar 

  • Mukherjea D, Jajoo S, Kaur T et al (2010) Transtympanic administration of short interfering (si) RNA for NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antiox. Redox Signal. [Epub June 2010]

    Google Scholar 

  • Niiyama Y, Kawamata T, Yamamoto J et al (2009) SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth 102:251–258

    Article  PubMed  CAS  Google Scholar 

  • O’Connor AB, Dworkin RH (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 122:S22–32

    Article  PubMed  Google Scholar 

  • Pabbidi RM, Yu SQ, Peng S et al (2008) Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 14:9

    Article  Google Scholar 

  • Patapoutian A, Peier AM, Story GM et al (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    Article  PubMed  CAS  Google Scholar 

  • Pomonis JD, Harrison JE, Mark L (2003) N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. in vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306:387–393

    Article  PubMed  CAS  Google Scholar 

  • Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar V, Whitworth CA, Pingle SC et al (2004) Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res 188:47–56

    Article  PubMed  CAS  Google Scholar 

  • Ritter RC, Ladenheim EE (1985) Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin. Am J Physiol 248:R501–504

    PubMed  CAS  Google Scholar 

  • Rybak LP (1999) Ototoxicity: bioprotective mechanisms. Curr Opin Otolaryngol Head Neck Surg 11:328–333

    Article  Google Scholar 

  • Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72:931–935

    Article  PubMed  CAS  Google Scholar 

  • Sha SH, Schacht J (2000) Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: d-methionine is a potential protectant. Hear Res 142:34–40

    Article  PubMed  CAS  Google Scholar 

  • Shinoda M, Ogino A, Ozaki N, Urano H, Hironaka K, Yasui M, Sugiura Y (2008) Involvement of TRPV1 in nociceptive behavior in a rat model of cancer pain. J Pain 9:687–699

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Natarajan K, Aggarwal BB (1996) Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-kappa B activation by diverse agents. J Immunol 157:4412–4420

    PubMed  CAS  Google Scholar 

  • Stevenel L (1956) Red pepper, a too little used therapeutic agent for anorexia, liver congestion and various vascular disorders (hemorrhoids, varices). Bull Soc Pathol Exot Filiales 49:841–843

    PubMed  CAS  Google Scholar 

  • Surh YJ, Han SS, Keum YS et al (2000) Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-κB and AP-1. Biofactors 12:107–112

    Article  PubMed  CAS  Google Scholar 

  • Snitker S, Fujishima Y, Shen H et al (2009) Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 89:45–50

    Article  PubMed  CAS  Google Scholar 

  • Szabó A, Helyes Z, Sándor K et al (2005) Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: in vivo study using gene-deficient mice. J Pharmacol Exp Ther 314:111–119

    Article  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Szolcsanyi J (1977) A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol (Paris) 73:251–279

    CAS  Google Scholar 

  • Szolcsanyi J (1996) Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism. Prog Brain Res 113:343–359

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  • Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 564:541–547

    Article  PubMed  CAS  Google Scholar 

  • Wilder-Smith EP, Ong WY, Guo Y et al (2007) Epidermal transient receptor potential vanilloid 1 in idiopathic small nerve fibre disease, diabetic neuropathy and healthy human subjects. Histopathology 51:674–680

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka M, St-Pierre S, Drapeau V et al (1999) Effects of red pepper on appetite and energy intake. Br J Nutr 82:115–123

    PubMed  CAS  Google Scholar 

  • Zech DFJ, Grond G, Lynch J et al (1995) Validation of World Health Organization guidelines for cancer pain relief: a 10-year prospective study. Pain 63:65–76

    Article  PubMed  CAS  Google Scholar 

  • Zhang LL, Yan Liu D, Ma LQ et al (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100:1063–1070

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grants from the National Institute of Health (DC02396) to LPR and (CA135494) to VR, a grant from the National Organization for Hearing Research and SIU School of Medicine Excellence in Academic Medicine Award to VR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vickram Ramkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramkumar, V., Mukherjea, D., Jajoo, S., Kaur, T., Rybak, L.P. (2010). Application of RNA Interference to Treat Conditions Associated with Dysregulation of Transient Receptor Potential Vanilloid 1 Channel. In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_9

Download citation

Publish with us

Policies and ethics