Skip to main content

RNAi Treatment of HIV-1 Infection

  • Chapter
  • First Online:
  • 1510 Accesses

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing by cleavage or translational inhibition of the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV-1). The first clinical trial using RNAi against HIV-1 in a lentiviral gene therapy setting was initiated in early 2008. In this chapter, we will focus on the basic principles of such an RNAi-based gene therapy against HIV-1. Subjects that will be covered include target site selection within the viral RNA genome, viral escape, and therapeutic strategies to prevent this, such as combinatorial RNAi approaches, systems available for multiplexing of RNAi inhibitors, methods to deliver the antiviral RNAi molecules and gene therapy protocols to achieve durable HIV-1 inhibition. We will also discuss several in vitro and in vivo test systems to evaluate the efficacy and safety of an RNAi gene therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aagaard LA, Zhang J, von Eije KJ et al (2008) Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 15:1536–1549

    PubMed  CAS  Google Scholar 

  • Abad X, Vera M, Jung SP et al (2008) Requirements for gene silencing mediated by U1 snRNA binding to a target sequence. Nucleic Acids Res 36:2338–2352

    PubMed  CAS  Google Scholar 

  • Amado RG, Mitsuyasu RT, Rosenblatt JD et al (2004) Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther 15:251–262

    PubMed  CAS  Google Scholar 

  • Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    PubMed  CAS  Google Scholar 

  • An DS, Donahue RE, Kamata M et al (2007a) Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 104:13110–13115

    PubMed  CAS  Google Scholar 

  • An DS, Poon B, Ho Tsong FR et al (2007b) Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 14:391–396

    PubMed  CAS  Google Scholar 

  • Anderson J, Akkina R (2005) CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retrovirology 2:53

    PubMed  Google Scholar 

  • Anderson J, Banerjea A, Akkina R (2003a) Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 13:303–312

    PubMed  CAS  Google Scholar 

  • Anderson J, Banerjea A, Planelles V, Akkina R (2003b) Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. AIDS Res Hum Retrovir 19:699–706

    PubMed  CAS  Google Scholar 

  • Baehrecke EH (2003) miRNAs: micro managers of programmed cell death. Curr Biol 13:R473–R475

    PubMed  CAS  Google Scholar 

  • Baenziger S, Tussiwand R, Schlaepfer E et al (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/-mice. Proc Natl Acad Sci USA 103:15951–15956

    PubMed  CAS  Google Scholar 

  • Banerjea A, Li MJ, Bauer G et al (2003) Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther 8:62–71

    PubMed  CAS  Google Scholar 

  • Barichievy S, Saayman S, von Eije KJ et al (2007) The inhibitory efficacy of RNA POL III-expressed long hairpin RNAs targeted to untranslated regions of the HIV-1 5′ long terminal repeat. Oligonucleotides 17:419–431

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Berges BK, Akkina SR, Folkvord JM et al (2008) Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2(-/-)gammac(-/-) (RAG-hu) mice. Virology 373:342–351

    PubMed  CAS  Google Scholar 

  • Berges BK, Wheat WH, Palmer BE et al (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/-(RAG-hu) mouse model. Retrovirology 3:76

    PubMed  Google Scholar 

  • Berkhout B, Brake Ot (2008) Towards an RNAi-based gene therapy. BIOforum Europe 4:35–37

    Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    PubMed  CAS  Google Scholar 

  • Boden D, Pusch O, Lee F et al (2003) Human immunodeficiency virus type 1 escape from RNA interference. J Virol 77:11531–11535

    PubMed  CAS  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    PubMed  CAS  Google Scholar 

  • Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14:1834–1844

    PubMed  CAS  Google Scholar 

  • Brake Ot, Berkhout B (2005) A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. J RNAi Gene Silencing 1:56–65

    PubMed  Google Scholar 

  • Brass AL, Dykxhoorn DM, Benita Y et al (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    PubMed  CAS  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    PubMed  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB, et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    PubMed  Google Scholar 

  • Bridge AJ, Pebernard S, Ducraux A et al (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    PubMed  CAS  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A et al (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858

    PubMed  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    PubMed  CAS  Google Scholar 

  • Castanotto D, Sakurai K, Lingeman R et al (2007) Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 35:5154–5164

    PubMed  CAS  Google Scholar 

  • Chan SP, Slack FJ (2007) And now introducing mammalian mirtrons. Dev Cell 13:605–607

    PubMed  CAS  Google Scholar 

  • Chang LJ, Liu X, He J (2005) Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 12:1133–1144

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Johnson PR, Wong KK Jr (1992) Dual-target inhibition of HIV-1 in vitro by means of an adeno- associated virus antisense vector. Science 258:1485–1488

    PubMed  CAS  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    PubMed  CAS  Google Scholar 

  • Coburn GA, Cullen BR (2002) Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 76:9225–9231

    PubMed  CAS  Google Scholar 

  • Culliton BJ (1990) Gene therapy begins. Science 249:1372

    PubMed  CAS  Google Scholar 

  • Das AT, Brummelkamp TR, Westerhout EM et al (2004) Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78:2601–2605

    PubMed  CAS  Google Scholar 

  • Davidson BL, Paulson HL (2004) Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 3:145–149

    PubMed  CAS  Google Scholar 

  • de Fougerolles AR (2008) Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 19:125–132

    PubMed  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    PubMed  CAS  Google Scholar 

  • Ding H, Schwarz DS, Keene A et al (2003) Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2:209–217

    PubMed  CAS  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    PubMed  CAS  Google Scholar 

  • Dropulic B (2001) Lentivirus in the clinic. Mol Ther 4:511–512

    PubMed  CAS  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007 – an update. J Gene Med 9:833–842

    PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    PubMed  CAS  Google Scholar 

  • Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196

    PubMed  CAS  Google Scholar 

  • Gimeno R, Weijer K, Voordouw A et al (2004) Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood 104:3886–3893

    PubMed  CAS  Google Scholar 

  • Goldstein H (2008) Summary of presentations at the NIH/NIAID new humanized rodent models 2007 workshop. AIDS Res Ther 5:3

    PubMed  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    PubMed  CAS  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    PubMed  CAS  Google Scholar 

  • Grimm D, Kay MA (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15:878–888

    PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    PubMed  CAS  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA et al (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH et al (2004) The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    PubMed  CAS  Google Scholar 

  • Hatziioannou T, Ambrose Z, Chung NP et al (2009) A macaque model of HIV-1 infection. Proc Natl Acad Sci USA 106:4425–4429

    PubMed  CAS  Google Scholar 

  • Ishaq M, Hu J, Wu X et al (2008) Knockdown of cellular RNA helicase DDX3 by short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol Biotechnol 39:231–238

    PubMed  CAS  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    PubMed  CAS  Google Scholar 

  • Jackson AL, Burchard J, Schelter J et al (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    PubMed  CAS  Google Scholar 

  • Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438

    PubMed  CAS  Google Scholar 

  • Kapadia SB, Brideau-Andersen A, Chisari FV (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 100:2014–2018

    PubMed  CAS  Google Scholar 

  • Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    PubMed  CAS  Google Scholar 

  • Kleinman ME, Yamada K, Takeda A et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    PubMed  CAS  Google Scholar 

  • Kohn DB, Bauer G, Rice CR et al (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94:368–371

    PubMed  CAS  Google Scholar 

  • Konig R, Zhou Y, Elleder D et al (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60

    PubMed  CAS  Google Scholar 

  • Konstantinova P, de Vries W, Haasnoot J et al (2006) Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther 13:1403–1413

    PubMed  CAS  Google Scholar 

  • Kumar P, Ban HS, Kim SS et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134:577–586

    PubMed  CAS  Google Scholar 

  • Lackner AA, Veazey RS (2007) Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu Rev Med 58:461–476

    PubMed  CAS  Google Scholar 

  • Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    PubMed  CAS  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

    PubMed  CAS  Google Scholar 

  • Lapidot T (2001) Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci 938:83–95

    PubMed  CAS  Google Scholar 

  • Lee NS, Dohjima T, Bauer G et al (2002a) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT et al (2002b) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    PubMed  CAS  Google Scholar 

  • Legrand N, Cupedo T, van Lent AU et al (2006a) Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in “human immune system” Rag2(-/-)gammac(-/-) mice. Blood 108:238–245

    PubMed  CAS  Google Scholar 

  • Legrand N, Weijer K, Spits H (2006b) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058

    PubMed  CAS  Google Scholar 

  • Levine BL, Humeau LM, Boyer J et al (2006) Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 103:17372–17377

    PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    PubMed  CAS  Google Scholar 

  • Li MJ, Kim J, Li S et al (2005) Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 12:900–909

    PubMed  CAS  Google Scholar 

  • Lim JK, Glass WG, McDermott DH et al (2006) CCR5: no longer a “good for nothing” gene–chemokine control of West Nile virus infection. Trends Immunol 27:308–312

    PubMed  CAS  Google Scholar 

  • Lisziewicz J, Sun D, Smythe J et al (1993) Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc Natl Acad Sci USA 90:8000–8004

    PubMed  CAS  Google Scholar 

  • Liu YP, Berkhout B (2008) Combinatorial RNAi strategies against HIV-1 and other escape-prone viruses. Int J BioSci Technol 1:1–10

    Google Scholar 

  • Liu YP, Haasnoot J, Berkhout B (2007) Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 35:5683–5693

    PubMed  CAS  Google Scholar 

  • Liu YP, Haasnoot J, Ter Brake O et al (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 36:2811–2824

    PubMed  CAS  Google Scholar 

  • Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98

    PubMed  CAS  Google Scholar 

  • Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990

    PubMed  CAS  Google Scholar 

  • Manilla P, Rebello T, Afable C et al (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16:17–25

    PubMed  CAS  Google Scholar 

  • Manz MG (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26:537–541

    PubMed  CAS  Google Scholar 

  • Marques JT, Williams BR (2005) Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23:1399–1405

    PubMed  CAS  Google Scholar 

  • Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286:2244–2245

    PubMed  CAS  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H et al (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    PubMed  CAS  Google Scholar 

  • McBride JL, Boudreau RL, Harper SQ et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873

    PubMed  CAS  Google Scholar 

  • McCaffrey AP, Nakai H, Pandey K et al (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21:639–644

    PubMed  CAS  Google Scholar 

  • McManus MT (2004) Small RNAs and immunity. Immunity 21:747–756

    PubMed  CAS  Google Scholar 

  • Mitsuyasu RT, Merigan TC, Carr A et al (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34(+) cells. Nat Med 15:285–292

    PubMed  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    PubMed  CAS  Google Scholar 

  • Muesing MA, Smith DH, Cabradilla CD et al (1985) Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313:450–458

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    PubMed  CAS  Google Scholar 

  • Nguyen T, Menocal EM, Harborth J et al (2008) RNAi therapeutics: an update on delivery. Curr Opin Mol Ther 10:158–167

    PubMed  CAS  Google Scholar 

  • Nishitsuji H, Kohara M, Kannagi M et al (2006) Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J Virol 80:7658–7666

    PubMed  CAS  Google Scholar 

  • Novina CD, Murray MF, Dykxhoorn DM et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686

    PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    PubMed  CAS  Google Scholar 

  • Park WS, Miyano-Kurosaki N, Hayafune M et al (2002) Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res 30:4830–4835

    PubMed  CAS  Google Scholar 

  • Robbins M, Judge A, Ambegia E et al (2008) Misinterpreting the therapeutic effects of siRNA caused by immune stimulation. Hum Gene Ther 19(10):991–999

    PubMed  CAS  Google Scholar 

  • Rossi JJ, June CH, Kohn DB (2007) Genetic therapies against HIV. Nat Biotechnol 25:1444–1454

    PubMed  CAS  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    PubMed  CAS  Google Scholar 

  • Sabariegos R, Gimenez-Barcons M, Tapia N et al (2006) Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs. J Virol 80:571–577

    PubMed  CAS  Google Scholar 

  • Saetrom P, Heale BS, Snove O Jr et al (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35:2333–2342

    PubMed  CAS  Google Scholar 

  • Sano M, Li H, Nakanishi M et al (2008) Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther 16:170–177

    PubMed  CAS  Google Scholar 

  • Sarver N, Cantin EM, Chang PS et al (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247:1222–1225

    PubMed  CAS  Google Scholar 

  • Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    PubMed  CAS  Google Scholar 

  • Sledz CA, Holko M, de Veer MJ et al (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839

    PubMed  CAS  Google Scholar 

  • Snyder LL, Esser JM, Pachuk CJ et al (2008) Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts. Antiviral Res 80:36–44

    PubMed  CAS  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ et al (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 427:848–853

    PubMed  CAS  Google Scholar 

  • Surabhi RM, Gaynor RB (2002) RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 76:12963–12973

    PubMed  CAS  Google Scholar 

  • Symensma TL, Giver L, Zapp M et al (1996) RNA aptamers selected to bind human immunodeficiency virus type 1 Rev in vitro are Rev responsive in vivo. J Virol 70:179–187

    PubMed  CAS  Google Scholar 

  • Takeshita F, Ochiya T (2006) Therapeutic potential of RNA interference against cancer. Cancer Sci 97:689–696

    PubMed  CAS  Google Scholar 

  • Ter Brake O, 't Hooft K, Liu YP et al (2008) Lentiviral vector design for multiple shRNA expression and durable HIV-1 Inhibition. Mol Ther 16:557–564

    PubMed  Google Scholar 

  • Ter Brake O, Berkhout B (2007) Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 9:743–750

    PubMed  Google Scholar 

  • Ter Brake O, Konstantinova P, Ceylan M et al (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14:883–892

    PubMed  Google Scholar 

  • Ter Brake O, Legrand N, von Eije KJ et al (2009) Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)(c)(-/-)) mouse model. Gene Ther 16:148–153

    PubMed  Google Scholar 

  • Tomari Y, Matranga C, Haley B et al (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    PubMed  CAS  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    PubMed  CAS  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L et al (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107

    PubMed  CAS  Google Scholar 

  • Unwalla HJ, Li HT, Bahner I et al (2006) Novel Pol II fusion promoter directs human immunodeficiency virus type 1-inducible coexpression of a short hairpin RNA and protein. J Virol 80:1863–1873

    PubMed  CAS  Google Scholar 

  • Vandekerckhove L, Christ F, Van Maele B et al (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 80:1886–1896

    PubMed  CAS  Google Scholar 

  • Vickers TA, Lima WF, Nichols JG et al (2007) Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Res 35:6598–6610

    PubMed  CAS  Google Scholar 

  • von Eije KJ, Ter Brake O, Berkhout B (2008) Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol 82:2895–2903

    Google Scholar 

  • von Eije KJ, Ter BO, Berkhout B (2009) Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs. J Gene Med 11:459–467

    Google Scholar 

  • Watanabe S, Terashima K, Ohta S et al (2007) Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109:212–218

    PubMed  CAS  Google Scholar 

  • Weinberg MS, Villeneuve LM, Ehsani A et al (2006) The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12:256–262

    PubMed  CAS  Google Scholar 

  • Westerhout EM, Berkhout B (2007) A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 35:4322–4330

    PubMed  CAS  Google Scholar 

  • Westerhout EM, Ooms M, Vink M et al (2005) HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 33:796–804

    PubMed  CAS  Google Scholar 

  • Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961

    PubMed  CAS  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    PubMed  CAS  Google Scholar 

  • Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    PubMed  CAS  Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L et al (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68

    PubMed  CAS  Google Scholar 

  • Zhang L, Kovalev GI, Su L (2007) HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 109:2978–2981

    PubMed  CAS  Google Scholar 

  • Zhou H, Xu M, Huang Q et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504

    PubMed  CAS  Google Scholar 

  • Zhou X, Symons J, Hoppes R et al (2007) Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnol 7:6

    PubMed  Google Scholar 

Download references

Acknowledgments

RNAi research in the Berkhout lab is sponsored by ZonMw (Translational gene therapy program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Berkhout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Eije, K.J., Berkhout, B. (2010). RNAi Treatment of HIV-1 Infection. In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_8

Download citation

Publish with us

Policies and ethics