Skip to main content

RNAi Suppression and Its Application

  • Chapter
  • First Online:
Book cover RNA Technologies and Their Applications

Part of the book series: RNA Technologies ((RNATECHN))

  • 1733 Accesses

Abstract

In eukaryotes, RNA interference (RNAi) is a gene silencing mechanism mediated by small RNAs (sRNAs), currently classified as small interfering RNA (siRNA), microRNA (miRNA), and piwi-interacting RNA (piRNA). These small RNAs are produced in Dicer (a ribonuclease III enzyme)-dependent (siRNA and miRNA) or Dicer-independent (piRNA) manner and are effected by a group of Argonaut (AGO) proteins. These small RNAs mediate silencing of target genes with complementary sequence at transcriptional or posttranscriptional level thereby to control a wide variety of biological functions. In worms and plants, RNA-dependent RNA polymerases (RdRPs) amplify RNAi by converting AGO cleavage products into dsRNAs for the generation of secondary siRNAs. One of the well characterized functions of RNAi is antiviral, which has been shown to serve as major viral innate immunity in fungi, plants, and invertebrates. Typically, RNAi-directed viral immunity (RDVI) is initiated with Dicer processing of viral dsRNAs, usually the replication intermediates, into siRNAs. These virus-derived siRNAs (viRNA) will then be used as sequence guide for target viral RNA destruction. Host-encoded miRNAs also contribute to viral control in mammal or bacterial control in plant. As a counterdefensive mechanism, many viruses and some bacteria are found to encode RNAi suppressors, previously known as pathogenicity factors. These RNAi antagonists target key components of RNAi for suppression, which eventually leads to defects in viRNA biogenesis or function. Since transgene expression in plants and invertebrates is often targeted by RNAi for suppression but can be reversed by various RNAi suppressors, codelivery of a VSR has been used to facilitate the isolation and biochemical characterization of a broad range of proteins of interests. RNAi suppressors can also be used as genetic tool for the study of biological functions controlled by certain class of endogenous sRNA (siRNA or miRNA). This is because, when expressed as transgenes, some RNAi suppressors can specifically target and interfere with the biogenesis or function of certain class of endogenous sRNA but not the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

RNAi:

RNA interference

sRNA:

small RNA

siRNA:

small interfering RNA

miRNA:

microRNA

piRNA:

PIWI-interacting RNA

RdRP:

RNA-dependent RNA polymerase

AGO:

Argonaut

viRNA:

virus-derived siRNA

dsRNA:

double-stranded RNA

C. elegans :

Caenorhabditis elegans

PTGS:

posttranscriptional gene silencing

RISC:

RNA-induced silencing complex

S. pombe :

Schizosaccharomyces pombe

endo-siRNA:

endogenous siRNA

RDVI:

RNAi-directed viral immunity

TEV:

Tobacco etch virus

PVY:

Potato virus Y

CP:

coat protein

N. benthamiana :

Nicotiana benthamiana

PDS:

phytoene desaturase

N. clevelandii :

Nicotiana clevelandii

PVX:

Potato virus X

VSR:

viral suppressor of RNAi

HC-Pro:

Helper component-proteinase

CMV:

Cucumber mosaic virus

FHV:

Flock house virus

PFV:

Primate foamy virus

CTV:

Citrus tristeza virus

GFP:

green fluorescent protein

TYLCV:

Tomato yellow leaf curl geminivirus

TBSV:

Tomato bushy stunt virus

CNV:

Cucumber necrosis virus

CRV:

Cymbidium ringspot virus

SPCSV:

Sweet potato chlorotic stunt virus

ssRNA:

single-stranded RNA

SPFMV:

Sweet potato feathery mottle virus

TMV:

Tobacco mosaic virus

ORMV:

Oilseed rape mosaic tobamovirus

TCV:

Turnip crinkle virus

BWYV:

Beet western yellows virus

SKP1:

S-phase kinase-related protein 1

SCF:

Skp1-Cul1/Cdc53,-F-box protein

SYLV:

Sugarcane yellow leaf virus

shRNA:

short hairpin RNA

A. tumefaciens :

Agrobacterium tumefaciens

T-DNA:

transfer DNA

P. syringae :

Pseudomonas syringae

PAMP:

pathogen-associated molecular pattern

rgs-CaM:

regulator of gene silencing-calmodulin-like protein

SDN1:

small RNA degrading nuclease 1

eri-1 :

enhanced RNAi-1

CHS:

chalcone synthase

aa:

amino acids

nt:

nucleotide

bp:

base pair

References

  • Ambros V, Chen X (2007) The regulation of genes and genomes by small RNAs. Development 134:1635–1641

    PubMed  CAS  Google Scholar 

  • Anandalakshmi R, Marathe R, Ge X et al (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290:142–144

    PubMed  CAS  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X et al (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084

    PubMed  CAS  Google Scholar 

  • Andersson MG, Haasnoot PC, Xu N et al (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556–9565

    PubMed  CAS  Google Scholar 

  • Angell SM, Baulcombe DC (1997) Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J 16:3675–3684

    PubMed  CAS  Google Scholar 

  • Angell SM, Davies C, Baulcombe DC (1996) Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216:197–201

    PubMed  CAS  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Baulcombe D (2002) Viral suppression of systemic silencing. Trends Microbiol 10:306–308

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    PubMed  CAS  Google Scholar 

  • Baulcombe DC, Molnar A (2004) Crystal structure of p19 – a universal suppressor of RNA silencing. Trends Biochem Sci 29:279–281

    PubMed  CAS  Google Scholar 

  • Baumberger N, Tsai CH, Lie M et al (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17:1609–1614

    PubMed  CAS  Google Scholar 

  • Bayne EH, Rakitina DV, Morozov SY et al (2005) Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482

    PubMed  CAS  Google Scholar 

  • Bennasser Y, Le SY, Benkirane M et al (2005) Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22:607–619

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    PubMed  CAS  Google Scholar 

  • Berry B, Deddouche S, Kirschner D et al (2009) Viral Suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila. PLoS ONE 4:e5866

    PubMed  Google Scholar 

  • Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    PubMed  CAS  Google Scholar 

  • Brigneti G, Voinnet O, Li WX et al (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    PubMed  CAS  Google Scholar 

  • Buck AH, Santoyo-Lopez J, Robertson KA et al (2007) Discrete clusters of virus-encoded microRNAs are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81:13761–13770

    PubMed  CAS  Google Scholar 

  • Cai X, Schafer A, Lu S et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    PubMed  CAS  Google Scholar 

  • Chao JA, Lee JH, Chapados BR et al (2005) Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12:952–957

    PubMed  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K et al (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186, Erratum in: Genes Dev. 2004, 18:1510

    PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 102:10381–10386

    PubMed  CAS  Google Scholar 

  • Cogoni C, Irelan JT, Schumacher M et al (1996) Transgene silencing of the Al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J 15:3153–3163

    PubMed  CAS  Google Scholar 

  • Covey SN, Al-Kaff NS, Langara A et al (1997) Plants combat infection by gene silencing. Nature 385:781–782

    CAS  Google Scholar 

  • Cuellar WJ, Kreuze JF, Rajamäki ML et al (2009) Elimination of antiviral defense by viral RNase III. Proc Natl Acad Sci USA 106:10354–10358

    PubMed  Google Scholar 

  • Cullen BR (2006) Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 7:563–567

    PubMed  CAS  Google Scholar 

  • Czech B, Malone CD, Zhou R et al (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802

    PubMed  CAS  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J et al (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    PubMed  CAS  Google Scholar 

  • Diaz-Pendon JA, Li F, Li WX et al (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    PubMed  CAS  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    PubMed  CAS  Google Scholar 

  • Ding XS, Liu J, Cheng NH et al (2004) The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17:583–592

    PubMed  CAS  Google Scholar 

  • Duchaine TF, Wohlschlegel JA, Kennedy S et al (2006) Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124:343–354

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA et al (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    PubMed  CAS  Google Scholar 

  • Ebhardt HA, Thi EP, Wang MB et al (2005) Extensive 3′ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc Natl Acad Sci USA 102:13398–13403

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A et al (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    PubMed  CAS  Google Scholar 

  • English JJ, Mueller E, Baulcombe DC (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–188

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    PubMed  CAS  Google Scholar 

  • Foster TM, Lough TJ, Emerson SJ et al (2002) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14:1497–1508

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555

    PubMed  CAS  Google Scholar 

  • Garcia S, Billecocq A, Crance JM et al (2006) Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J Gen Virol 87:1985–1989

    PubMed  CAS  Google Scholar 

  • Ghildiyal M, Seitz H, Horwich MD et al (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–1081

    PubMed  CAS  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ et al (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  • Guillaume M, Olivier V (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82

    Google Scholar 

  • Guo HS, Ding SW (2002) A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J 21:398–407

    PubMed  CAS  Google Scholar 

  • Haasnoot J, de Vries W, Geutjes E-J et al (2007) The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3:e86

    PubMed  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    PubMed  CAS  Google Scholar 

  • Hellwig S, Bass BL (2008) A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proc Natl Acad Sci USA 105:12897–12902

    PubMed  CAS  Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T et al (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    PubMed  CAS  Google Scholar 

  • Iida T, Kawaguchi R, Nakayama J-I (2006) Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr Biol 16:1459–1464

    PubMed  CAS  Google Scholar 

  • Isobe R, Kojima K, Matsuyama T et al (2004) Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Arch Virol 149:1931–1940

    PubMed  CAS  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    PubMed  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of post-transcriptional gene silencing. Cell 95:461–470

    PubMed  CAS  Google Scholar 

  • Keese PK, Gibbs A (1992) Origins of genes: “big bang” or continuous creation? Proc Natl Acad Sci USA 89:9489–9493

    PubMed  CAS  Google Scholar 

  • Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–649

    PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    PubMed  CAS  Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G et al (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683

    PubMed  CAS  Google Scholar 

  • Lakatos L, Csorba T, Pantaleo V et al (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780

    PubMed  CAS  Google Scholar 

  • Lakatos L, Szittya G, Silhavy D et al (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–884

    PubMed  CAS  Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    PubMed  CAS  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    PubMed  CAS  Google Scholar 

  • Li F, Ding SW (2006) Virus counterdefense: Diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531

    PubMed  CAS  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    PubMed  CAS  Google Scholar 

  • Li WX, Li H, Lu R et al (2004) Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA 101:1350–1355

    PubMed  CAS  Google Scholar 

  • Lichner Z, Silhavy D, Burgyan J (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J Gen Virol 84:975–980

    PubMed  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (1992) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact 5:144–153

    PubMed  CAS  Google Scholar 

  • Lingel A, Simon B, Izaurralde E et al (2005) The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of double-stranded RNA recognition. EMBO Rep 6:1149–1155

    PubMed  CAS  Google Scholar 

  • Lozsa R, Csorba T, Lakatos L et al (2008) Inhibition of 3′ modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res 36:4099–4107

    PubMed  CAS  Google Scholar 

  • Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747

    PubMed  CAS  Google Scholar 

  • Lu R, Maduro M, Li F et al (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436:1040–1043

    PubMed  CAS  Google Scholar 

  • Lu S, Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 78:12868–12876

    PubMed  CAS  Google Scholar 

  • Macrae IJ, Zhou K, Li F et al (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311:195–198

    PubMed  CAS  Google Scholar 

  • Mallory AC, Parks G, Endres MW et al (2002) The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20:622–625

    PubMed  CAS  Google Scholar 

  • Mangwende T, Wang M-L, Borth W et al (2009) The P0 gene of sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology 384:38–50

    PubMed  CAS  Google Scholar 

  • Matzke MA, Mette MF, Matzke AJ (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    PubMed  CAS  Google Scholar 

  • Merai Z, Kerenyi Z, Molnar A et al (2005) Aureusvirus P14 is an efficient RNA silencing suppressor that binds double-stranded RNAs without size specificity. J Virol 79:7217–7226

    PubMed  CAS  Google Scholar 

  • Morel JB, Godon C, Mourrain P et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639

    PubMed  CAS  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen RA (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CAS  Google Scholar 

  • Navarro L, Jay F, Nomura K et al (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967

    PubMed  CAS  Google Scholar 

  • Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9:673–678

    PubMed  CAS  Google Scholar 

  • Pazhouhandeh M, Dieterle M, Marrocco K et al (2006) F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci USA 103:1994–1999

    PubMed  CAS  Google Scholar 

  • Pfeffer S, Dunoyer P, Heim F et al (2002) P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815–6824

    PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    PubMed  CAS  Google Scholar 

  • Qiu W, Park JW, Scholthof HB (2002) Tombusvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol Plant Microbe Interact 15:269–280

    PubMed  CAS  Google Scholar 

  • Qu F, Morris TJ (2002) Efficient infection of Nicotiana benthamiana by tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant Microbe Interact 15:193–202

    PubMed  CAS  Google Scholar 

  • Qu F, Ren T, Morris TJ (2003) The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511–522

    PubMed  CAS  Google Scholar 

  • Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492

    PubMed  CAS  Google Scholar 

  • Randall G, Panis M, Cooper JD et al (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104:12884–12889

    PubMed  CAS  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560

    PubMed  CAS  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    PubMed  CAS  Google Scholar 

  • Segers GC, Zhang X, Deng F et al (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA 104:12902–12906

    PubMed  CAS  Google Scholar 

  • Shaik Syed Ali P, Chen JCH (2009) Structure of the RNA-binding domain of nodamura virus protein B2, a suppressor of RNA interference. Biochemistry 48:2307–2309

    PubMed  Google Scholar 

  • Sijen T, Fleenor J, Simmer F et al (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    PubMed  CAS  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    PubMed  CAS  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6:127–138

    PubMed  CAS  Google Scholar 

  • Su J, Oanh DT, Lyons RE et al (2008) A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: identification and functional characterisation of Dicer-1. Fish Shellfish Immunol 24:223–233

    PubMed  Google Scholar 

  • Tam OH, Aravin AA, Stein P et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    PubMed  CAS  Google Scholar 

  • Tijsterman M, May RC, Simmer F et al (2004) Genes required for systemic RNA interference in Caenorhabditis elegans. Curr Biol 14:111–116

    PubMed  CAS  Google Scholar 

  • Triboulet R, Mari B, Lin YL et al (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582

    PubMed  CAS  Google Scholar 

  • Van der Vlugt RAA, Ruiter RK, Goldbach RW (1992) Evidence for sense RNA-mediated protection to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol Biol 20:631–639

    PubMed  Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS et al (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498

    PubMed  CAS  Google Scholar 

  • Vargason JM, Szittya G, Burgyan J et al (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115:799–811

    PubMed  CAS  Google Scholar 

  • Vogler H, Akbergenov R, Shivaprasad PV et al (2007) Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J Virol 81:10379–10388

    PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Non-cell autonomous RNA silencing. FEBS Lett 579:5858–5871

    PubMed  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    PubMed  CAS  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553

    PubMed  CAS  Google Scholar 

  • Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157–167

    PubMed  CAS  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96:14147–14152

    PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    PubMed  CAS  Google Scholar 

  • Wang XH, Aliyari R, Li WX et al (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham HW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    PubMed  CAS  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459

    PubMed  CAS  Google Scholar 

  • Ye K, Malinina L, Patel DJ (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426:874–878

    PubMed  CAS  Google Scholar 

  • Yelina NE, Savenkov EI, Solovyev AG et al (2002) Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76:12981–12991

    PubMed  CAS  Google Scholar 

  • Yigit E, Batista PJ, Bei Y et al (2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127:747–757

    PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    PubMed  CAS  Google Scholar 

  • Zhang X, Yuan Y-R, Pei Y et al (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    PubMed  CAS  Google Scholar 

  • Zrachya A, Glick E, Levy Y et al (2007) Suppressor of RNA silencing encoded by tomato yellow leaf curl virus-Israel. Virology 358:159–165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lu .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 1 Viral suppressors of RNAi

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yi, X., Lu, R. (2010). RNAi Suppression and Its Application. In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_3

Download citation

Publish with us

Policies and ethics