Skip to main content

Selected Strategies for the Delivery of siRNA In Vitro and In Vivo

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

RNA-based therapeutic strategies are considered as a highly promising alternative to conventional drug development. Among the different classes of oligonucleotide-derived prospective drugs, small interfering RNAs (siRNAs) are of particular interest. However, cellular uptake and subsequent intracellular trafficking to the effector complex (RNA-induced silencing complex; RISC) represent major technical hurdles for the efficacy of these macromolecular drugs. Thus, the development of appropriate delivery systems is an essential requirement to turn these molecules into medicine. In this review, we will focus on two particular auspicious aspects in this context, the phosphorothioate-stimulated uptake of naked siRNA and the use of cell-penetrating peptides as shuttles for a controlled cellular uptake. Moreover, we will present some of the most promising recent approaches for siRNA delivery in vivo, which may help to pave the road to drugs of the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ago2:

Argonaute 2

AMD:

age-related macular degeneration

CPP:

cell-penetrating peptide

dsRNA:

double-stranded RNA

ER:

endoplasmic reticulum

exNA:

extracellular nucleic acids

exRNA:

extracellular RNA

GFP:

green fluorescent protein

gp41:

glycoprotein 41

HA:

hemagglutinin

HIV:

human immunodeficiency virus

IL:

interleukin

IFN:

interferon

JEV:

Japanese encephalitis virus

LF2000:

Lipofectamine™ 2000

MEND:

multifunctional envelope-type nano device

miRNA:

microRNA

NLS:

nuclear localization sequence

PCI:

photochemical internalization

PCR:

polymerase chain reaction

PEG:

polyethylene glycol

PEI:

polyethyleneimine

PLL:

Poly-l-Lysine

PS-ON:

phosphorothioate-modified oligonucleotides

PTD:

protein transduction domain

PTGS:

posttranscriptional gene silencing

R8/R9:

oligoarginines

RBD:

RNA-binding domain

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

RVG:

rabies virus glycoprotein

siRNA:

small interfering RNA

shRNA:

short hairpin RNA

ssDNA:

single-stranded DNA

STR-R8:

stearyl-R8

TLR:

Toll-like receptor

TNF:

tumor necrosis factor

TP10:

transportan 10

VEGF:

vascular endothelial growth factor

References

  • Aigner A (2008) Cellular delivery in vivo of siRNA-based therapeutics. Curr Pharm Des 14:3603–3619

    PubMed  CAS  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    PubMed  CAS  Google Scholar 

  • Allinquant B, Hantraye P, Mailleux P et al (1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J Cell Biol 128:919–927

    PubMed  CAS  Google Scholar 

  • Anker P, Stroun M (2002) Progress in the knowledge of circulating nucleic acids: plasma RNA is particle-associated. Can it become a general detection marker for a cancer blood test? Clin Chem 48:1210–1211

    PubMed  CAS  Google Scholar 

  • Aouadi M, Tesz GJ, Nicoloro SM et al (2009) Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458:1180–1184

    PubMed  CAS  Google Scholar 

  • Bayele HK, Sakthivel T, O'Donell M et al (2005) Versatile peptide dendrimers for nucleic acid delivery. J Pharm Sci 94:446–457

    PubMed  CAS  Google Scholar 

  • Bayele HK, Ramaswamy C, Wilderspin AF et al (2006) Protein transduction by lipidic peptide dendrimers. J Pharm Sci 95:1227–1237

    PubMed  CAS  Google Scholar 

  • Berg K, Folini M, Prasmickaite L et al (2007) Photochemical internalization: a new tool for drug delivery. Curr Pharm Biotechnol 8:362–372

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    PubMed  CAS  Google Scholar 

  • Bitko V, Musiyenko A, Shulyayeva O et al (2005) Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11:50–55

    PubMed  CAS  Google Scholar 

  • Blackburn WH, Dickerson EB, Smith MH et al (2009) Peptide-functionalized nanogels for targeted siRNA delivery. Bioconjug Chem 20(5):960–968

    PubMed  CAS  Google Scholar 

  • Bøe S, Longva AS, Hovig E (2007) Photochemically induced gene silencing using small interfering RNA molecules in combination with lipid carriers. Oligonucleotides 17:166–173

    PubMed  Google Scholar 

  • Bonsted A, Wagner E, Prasmickaite L et al (2008) Photochemical enhancement of DNA delivery by EGF receptor targeted polyplexes. Methods Mol Biol 434:171–181

    PubMed  CAS  Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V et al (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719

    PubMed  CAS  Google Scholar 

  • Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    PubMed  CAS  Google Scholar 

  • Check E (2005) Gene therapy put on hold as third child develops cancer. Nature 433:561

    Google Scholar 

  • Chen XQ, Bonnefoi H, Pelte MF et al (2000) Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res 6:3823–3826

    PubMed  CAS  Google Scholar 

  • Chen QR, Zhang L, Stass SA et al (2001) Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res 29:1334–1340

    PubMed  CAS  Google Scholar 

  • Chiu YL, Ali A, Chu CY et al (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11:1165–1175

    PubMed  CAS  Google Scholar 

  • Console S, Marty C, Garcia-Echeverria C et al (2003) Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278:35109–35114

    PubMed  CAS  Google Scholar 

  • Crombez L, Morris MC, Deshayes S et al (2008) Peptide-based nanoparticle for ex vivo and in vivo drug delivery. Curr Pharm Des 14:3656–3665

    PubMed  CAS  Google Scholar 

  • Crombez L, Aldrian-Herrada G, Konate K et al (2009a) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17:95–103

    PubMed  CAS  Google Scholar 

  • Crombez L, Morris MC, Dufort S et al (2009b) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 37(14):4559–4569

    PubMed  CAS  Google Scholar 

  • Davidson TJ, Harel S, Arboleda VA et al (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 24:10040–10046

    PubMed  CAS  Google Scholar 

  • De Coupade C, Fittipaldi A, Chagnas V et al (2005) Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem J 390:407–418

    PubMed  Google Scholar 

  • de Diesbach P, Berens C, N'Kuli F et al (2000) Identification, purification and partial characterisation of an oligonucleotide receptor in membranes of HepG2 cells. Nucleic Acids Res 28:868–874

    PubMed  Google Scholar 

  • de Fougerolles A, Vornlocher HP, Maraganore J et al (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    PubMed  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  • Derossi D, Calvet S, Trembleau A et al (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    PubMed  CAS  Google Scholar 

  • Deshayes S, Plenat T, Aldrian-Herrada G et al (2004) Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry 43:7698–7706

    PubMed  CAS  Google Scholar 

  • Deshayes S, Morris M, Heitz F et al (2008) Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 60:537–547

    PubMed  CAS  Google Scholar 

  • Detzer A, Overhoff M, Mescalchin A et al (2008) Phosphorothioate-stimulated cellular uptake of siRNA: a cell culture model for mechanistic studies. Curr Pharm Des 14:3666–3673

    PubMed  CAS  Google Scholar 

  • Detzer A, Overhoff M, Wünsche W et al (2009) Increased RNAi is related to intracellular release of siRNA via a covalently attached signal peptide. RNA 15:627–636

    PubMed  CAS  Google Scholar 

  • Doerfler W (1995) Uptake of foreign DNA by mammalian cells via the gastrointestinal tract in mice: methylation of foreign DNA – a cellular defense mechanism. Curr Top Microbiol Immunol 197:209–224

    PubMed  CAS  Google Scholar 

  • Doerfler W, Hohlweg U, Muller K et al (2001) Foreign DNA integration – perturbations of the genome – oncogenesis. Ann N Y Acad Sci 945:276–288

    PubMed  CAS  Google Scholar 

  • Edenhofer F (2008) Protein transduction revisited: novel insights into the mechanism underlying intracellular delivery of proteins. Curr Pharm Des 14:3628–3636

    PubMed  CAS  Google Scholar 

  • Eguchi A, Meade BR, Chang YC et al (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27:567–571

    PubMed  CAS  Google Scholar 

  • El-Andaloussi S, Johansson H, Magnusdottir A et al (2005) TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. J Control Release 110:189–201

    PubMed  CAS  Google Scholar 

  • El-Andaloussi S, Johansson HJ, Holm T et al (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15:1820–1826

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    PubMed  CAS  Google Scholar 

  • Endoh T, Sisido M, Ohtsuki T (2007) Photo inducible RNA interference using cell permeable protein carrier. Nucleic Acids Symp Ser (Oxf) 51:127–128

    Google Scholar 

  • Endoh T, Sisido M, Ohtsuki T (2008) Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjug Chem 19:1017–1024

    PubMed  CAS  Google Scholar 

  • Endoh T, Ohtsuki T (2009) Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev 61:704–709

    PubMed  CAS  Google Scholar 

  • Epand RM (2003) Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta 1614:116–121

    PubMed  CAS  Google Scholar 

  • Fattal E, Barratt G (2009) Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 157:179–194

    PubMed  CAS  Google Scholar 

  • Fawell S, Seery J, Daikh Y et al (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668

    PubMed  CAS  Google Scholar 

  • Filleur S, Courtin A, Ait-Si-Ali S et al (2003) SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 63:3919–3922

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    PubMed  CAS  Google Scholar 

  • Fittipaldi A, Ferrari A, Zoppe M et al (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278:34141–34149

    PubMed  CAS  Google Scholar 

  • Foged C, Nielsen HM (2008) Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 5:105–117

    PubMed  CAS  Google Scholar 

  • Folini M, Bandiera R, Millo E et al (2007) Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Prolif 40:905–920

    PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    PubMed  CAS  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W et al (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    PubMed  CAS  Google Scholar 

  • Futaki S, Masui Y, Nakase I et al (2005) Unique features of a pH-sensitive fusogenic peptide that improves the transfection efficiency of cationic liposomes. J Gene Med 7:1450–1458

    PubMed  CAS  Google Scholar 

  • Futaki S (2006) Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. Biopolymers 84:241–249

    PubMed  CAS  Google Scholar 

  • Garcia-Olmo D, Garcia-Olmo DC, Ontanon J et al (2000) Horizontal transfer of DNA and the “genometastasis hypothesis”. Blood 95:724–725

    PubMed  CAS  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    PubMed  CAS  Google Scholar 

  • Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11:599–606

    PubMed  CAS  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA et al (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    PubMed  CAS  Google Scholar 

  • Haque ME, Koppaka V, Axelsen PH et al (2005) Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion. Biophys J 89:3183–3194

    PubMed  CAS  Google Scholar 

  • Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    PubMed  CAS  Google Scholar 

  • Hu Y, Atukorale PU, Lu JJ et al (2009) Cytosolic delivery mediated via electrostatic surface binding of protein, virus, or siRNA cargos to pH-responsive core-shell gel particles. Biomacromolecules 10:756–765

    PubMed  CAS  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    PubMed  CAS  Google Scholar 

  • Hyndman L, Lemoine JL, Huang L et al (2004) HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J Control Release 99:435–444

    PubMed  CAS  Google Scholar 

  • Jeong JH, Mok H, Oh YK et al (2009) siRNA conjugate delivery systems. Bioconjug Chem 20:5–14

    PubMed  CAS  Google Scholar 

  • Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    PubMed  CAS  Google Scholar 

  • Johnson LN, Cashman SM, Kumar-Singh R (2008) Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 16:107–114

    PubMed  CAS  Google Scholar 

  • Joliot AH, Triller A, Volovitch M et al (1991) Alpha-2, 8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 3:1121–1134

    PubMed  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2007a) “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J Liposome Res 17:197–203

    PubMed  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2007b) Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 18:363–370

    PubMed  CAS  Google Scholar 

  • Kang H, Delong R, Fisher MH et al (2005) Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 22:2099–2106

    PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Futaki S et al (2007) Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 14:682–689

    PubMed  CAS  Google Scholar 

  • Kilk K, El-Andaloussi S, Järver P et al (2005) Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J Control Release 103:511–523

    PubMed  CAS  Google Scholar 

  • Kim WJ, Christensen LV, Jo S et al (2006) Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 14:343–350

    PubMed  Google Scholar 

  • Kleinman ME, Yamada K, Takeda A et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    PubMed  CAS  Google Scholar 

  • Kogure K, Akita H, Yamada Y et al (2008) Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev 60:559–571

    PubMed  CAS  Google Scholar 

  • Kootstra NA, Verma IM (2003) Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 43:413–439

    PubMed  CAS  Google Scholar 

  • Kopreski MS, Benko FA, Kwak LW et al (1999) Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 5:1961–1965

    PubMed  CAS  Google Scholar 

  • Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    PubMed  CAS  Google Scholar 

  • Kwon EJ, Bergen JM, Pun SH (2008) Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjug Chem 19:920–927

    PubMed  CAS  Google Scholar 

  • Laktionov PP, Dazard JE, Vives E et al (1999) Characterisation of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes. Nucleic Acids Res 27:2315–2324

    PubMed  CAS  Google Scholar 

  • Langel Ü (ed) (2006) Handbook of cell-penetrating peptides. CRC Press, Boca Raton

    Google Scholar 

  • Laufer SD, Restle T (2008) Peptide-mediated cellular delivery of oligonucleotide-based therapeutics in vitro: quantitative evaluation of overall efficacy employing easy to handle reporter systems. Curr Pharm Des 14:3637–3655

    PubMed  CAS  Google Scholar 

  • Lehmann MJ, Sczakiel G (2005) Spontaneous uptake of biologically active recombinant DNA by mammalian cells via a selected DNA segment. Gene Ther 12:446–451

    PubMed  CAS  Google Scholar 

  • Leng Q, Scaria P, Zhu J et al (2005) Highly branched HK peptides are effective carriers of siRNA. J Gene Med 7:977–986

    PubMed  CAS  Google Scholar 

  • Leung RK, Whittaker PA (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107:222–239

    PubMed  CAS  Google Scholar 

  • Lindgren M, Hällbrink M, Prochiantz A et al (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103

    PubMed  CAS  Google Scholar 

  • Liu Z, Li M, Cui D et al (2005) Macro-branched cell-penetrating peptide design for gene delivery. J Control Release 102:699–710

    PubMed  CAS  Google Scholar 

  • Lundberg M, Johansson M (2001) Is VP22 nuclear homing an artifact? Nat Biotechnol 19:713–714

    PubMed  CAS  Google Scholar 

  • Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291:367–371

    PubMed  CAS  Google Scholar 

  • Lundberg P, El-Andaloussi S, Sutlu T et al (2007) Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 21:2664–2671

    PubMed  CAS  Google Scholar 

  • Maiolo JR, Ferrer M, Ottinger EA (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta 1712:161–172

    PubMed  CAS  Google Scholar 

  • Mano M, Teodosio C, Paiva A et al (2005) On the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide. Biochem J 390:603–612

    PubMed  CAS  Google Scholar 

  • McCaffrey AP, Meuse L, Pham TT et al (2002) RNA interference in adult mice. Nature 418:38–39

    PubMed  CAS  Google Scholar 

  • McNamara JO, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    PubMed  CAS  Google Scholar 

  • Meade BR, Dowdy SF (2008) Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev 60:530–536

    Google Scholar 

  • Mescalchin A, Detzer A, Wecke M et al (2007) Cellular uptake and intracellular release are major obstacles to the therapeutic application of siRNA: novel options by phosphorothioate-stimulated delivery. Expert Opin Biol Ther 7:1531–1538

    PubMed  CAS  Google Scholar 

  • Meyer M, Philipp A, Oskuee R et al (2008) Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 130:3272–3273

    PubMed  CAS  Google Scholar 

  • Meyer M, Dohmen C, Philipp A et al (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6:752–762

    PubMed  CAS  Google Scholar 

  • Michiue H, Tomizawa K, Wei FY et al (2005) The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J Biol Chem 280:8285–8289

    PubMed  CAS  Google Scholar 

  • Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10:406–411

    PubMed  CAS  Google Scholar 

  • Morris MC, Vidal P, Chaloin L et al (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25:2730–2736

    PubMed  CAS  Google Scholar 

  • Morris MC, Deshayes S, Heitz F et al (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–217

    PubMed  CAS  Google Scholar 

  • Moschos SA, Jones SW, Perry MM et al (2007) Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18:1450–1459

    PubMed  CAS  Google Scholar 

  • Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Kogure K, Futaki S et al (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 119:360–367

    PubMed  CAS  Google Scholar 

  • Ng EK, Tsui NB, Lam NY et al (2002) Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem 48:1212–1217

    PubMed  CAS  Google Scholar 

  • Oehlke J, Scheller A, Wiesner B et al (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414:127–139

    PubMed  CAS  Google Scholar 

  • Ogris M, Carlisle RC, Bettinger T et al (2001) Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J Biol Chem 276:47550–47555

    PubMed  CAS  Google Scholar 

  • Oliveira S, Fretz MM, Hogset A et al (2007a) Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochim Biophys Acta 1768:1211–1217

    PubMed  CAS  Google Scholar 

  • Oliveira S, van Rooy I, Kranenburg O et al (2007b) Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm 331:211–214

    PubMed  CAS  Google Scholar 

  • Oliveira S, Hogset A, Storm G et al (2008) Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo. Curr Pharm Des 14:3686–3697

    PubMed  CAS  Google Scholar 

  • Overhoff M, Wünsche W, Sczakiel G (2004) Quantitative detection of siRNA and single-stranded oligonucleotides: relationship between uptake and biological activity of siRNA. Nucleic Acids Res 32:e170

    PubMed  Google Scholar 

  • Overhoff M, Sczakiel G (2005) Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep 6:1176–1181

    PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    PubMed  CAS  Google Scholar 

  • Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992

    PubMed  CAS  Google Scholar 

  • Peer D, Zhu P, Carman CV et al (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 104:4095–4100

    PubMed  CAS  Google Scholar 

  • Pichon C, Monsigny M, Roche AC (1999) Intracellular localization of oligonucleotides: influence of fixative protocols. Antisense Nucleic Acid Drug Dev 9:89–93

    PubMed  CAS  Google Scholar 

  • Plank C, Zauner W, Wagner E (1998) Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 34:21–35

    PubMed  CAS  Google Scholar 

  • Pooga M, Hällbrink M, Zorko M et al (1998) Cell penetration by transportan. FASEB J 12:67–77

    PubMed  CAS  Google Scholar 

  • Preuss M, Tecle M, Shah I et al (2003) Comparison between the interactions of adenovirus-derived peptides with plasmid DNA and their role in gene delivery mediated by liposome-peptide-DNA virus-like nanoparticles. Org Biomol Chem 1:2430–2438

    PubMed  CAS  Google Scholar 

  • Rahbek UL, Howard KA, Oupický D et al (2008) Intracellular siRNA and precursor miRNA trafficking using bioresponsive copolypeptides. J Gene Med 10:81–93

    PubMed  CAS  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    PubMed  CAS  Google Scholar 

  • Rao DD, Vorhies JS, Senzer N et al (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    PubMed  CAS  Google Scholar 

  • Raper SE, Yudkoff M, Chirmule N et al (2002) A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 13:163–175

    PubMed  CAS  Google Scholar 

  • Raper SE, Chirmule N, Lee FS et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    PubMed  CAS  Google Scholar 

  • Read ML, Bremner KH, Oupicky D et al (2003) Vectors based on reducible polycations facilitate intracellular release of nucleic acids. J Gene Med 5:232–245

    PubMed  CAS  Google Scholar 

  • Read ML, Singh S, Ahmed Z et al (2005) A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res 33:e86

    PubMed  Google Scholar 

  • Reddi KK, Holland JF (1976) Elevated serum ribonuclease in patients with pancreatic cancer. Proc Natl Acad Sci USA 73:2308–2310

    PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E et al (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Brooks H et al (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    PubMed  CAS  Google Scholar 

  • Ritter W, Plank C, Lausier J et al (2003) A novel transfecting peptide comprising a tetrameric nuclear localization sequence. J Mol Med 81:708–717

    PubMed  CAS  Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    PubMed  CAS  Google Scholar 

  • Rothbard JB, Jessop TC, Lewis RS et al (2004) Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506–9507

    PubMed  CAS  Google Scholar 

  • Sakurai Y, Hatakeyama H, Akita H et al (2009) Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system. Biol Pharm Bull 32:928–932

    PubMed  CAS  Google Scholar 

  • Schubbert R, Lettmann C, Doerfler W (1994) Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen Genet 242:495–504

    PubMed  CAS  Google Scholar 

  • Schubbert R, Renz D, Schmitz B et al (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci USA 94:961–966

    PubMed  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A et al (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    PubMed  CAS  Google Scholar 

  • Schwarze SR, Dowdy SF (2000) In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21:45–48

    PubMed  CAS  Google Scholar 

  • Simeoni F, Morris MC, Heitz F et al (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31:2717–2724

    PubMed  CAS  Google Scholar 

  • Snøve O Jr, Rossi JJ (2006) Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi. Genome Biol 7:231

    PubMed  Google Scholar 

  • Song E, Lee SK, Wang J et al (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351

    PubMed  CAS  Google Scholar 

  • Song E, Zhu P, Lee SK et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    PubMed  CAS  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    PubMed  CAS  Google Scholar 

  • Soomets U, Lindgren M, Gallet X et al (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467:165–176

    PubMed  CAS  Google Scholar 

  • Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766

    PubMed  CAS  Google Scholar 

  • Soundara Manickam D, Oupický D (2006) Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug Chem 17:1395–1403

    Google Scholar 

  • Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    PubMed  CAS  Google Scholar 

  • Takizawa PA, Yucel JK, Veit B et al (1993) Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73:1079–1090

    PubMed  CAS  Google Scholar 

  • Tönges L, Lingor P, Egle R et al (2006) Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12:1431–1438

    PubMed  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V et al (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Levchenko TS, Rammohan R et al (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100:1972–1977

    PubMed  CAS  Google Scholar 

  • Tu Y, Kim JS (2008) A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes. J Gene Med 10:646–654

    PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    PubMed  CAS  Google Scholar 

  • Turner JJ, Arzumanov AA, Gait MJ (2005) Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides. Nucleic Acids Res 33:27–42

    PubMed  CAS  Google Scholar 

  • Tyagi M, Rusnati M, Presta M et al (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    PubMed  CAS  Google Scholar 

  • Veldhoen S, Laufer SD, Trampe A et al (2006) Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res 34:6561–6573

    PubMed  CAS  Google Scholar 

  • Veldhoen S, Laufer SD, Restle T (2008) Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 9:1276–1320

    PubMed  CAS  Google Scholar 

  • Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    PubMed  CAS  Google Scholar 

  • Wang HJ, Benlimame N, Nabi I (1997) The AMF-R tubule is a smooth ilimaquinone-sensitive subdomain of the endoplasmic reticulum. J Cell Sci 110(Pt 24):3043–3053

    PubMed  CAS  Google Scholar 

  • Wang Y, Sheng G, Juranek S et al (2008a) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213

    PubMed  CAS  Google Scholar 

  • Wang Y, Juranek S, Li H et al (2008b) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926

    PubMed  CAS  Google Scholar 

  • Wesche-Soldato DE, Chung CS, Lomas-Neira J et al (2005) In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood 106:2295–2301

    PubMed  CAS  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    PubMed  CAS  Google Scholar 

  • Xie FY, Woodle MC, Lu PY (2006) Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today 11:67–73

    PubMed  CAS  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    PubMed  CAS  Google Scholar 

  • Zatsepin TS, Turner JJ, Oretskaya TS et al (2005) Conjugates of oligonucleotides and analogues with cell penetrating peptides as gene silencing agents. Curr Pharm Des 11:3639–3654

    PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    PubMed  CAS  Google Scholar 

  • Zorko M, Langel Ü (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those authors whose work was not cited directly owing to space limitations. T.R. acknowledges funding by EC-grant LSHG-CT-2003-503480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra D. Laufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laufer, S.D., Detzer, A., Sczakiel, G., Restle, T. (2010). Selected Strategies for the Delivery of siRNA In Vitro and In Vivo . In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_2

Download citation

Publish with us

Policies and ethics