Stochastic Optimization Approaches to Image Reconstruction in Electrical Impedance Tomography

  • Chang-Jin Boo
  • Ho-Chan Kim
  • Min-Jae Kang
  • Kwang Y. Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)


In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two stochastic optimization techniques such as particle swarm optimization (PSO).and simultaneous perturbation stochastic approximation (SPSA) algorithms for solving the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, particle swarm optimization, and simultaneous perturbation stochastic approximation.


Particle Swarm Optimization Particle Swarm Optimization Algorithm Electrical Impedance Tomography Resistivity Distribution Simultaneous Perturbation Stochastic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster, J.G.: Electrical Impedance Tomography. Adam Hilger (1990)Google Scholar
  2. 2.
    Yorkey, T.J., Webster, J.G., Tompkins, W.J.: Comparing Reconstruction Algorithms for Electrical Impedance Tomography. IEEE Trans. on Biomedical Engineering. 34, 843–852 (1987)CrossRefGoogle Scholar
  3. 3.
    Glidewell, M., Ng, K.T.: Anatomically Constrained Electrical Impedance Tomography for Anisotropic Bodies Via Two-step Approach. IEEE Trans. on Medical Imaging 14, 498–503 (1995)CrossRefGoogle Scholar
  4. 4.
    Paulsen, K.D., Meaney, P.M., Moskowitz, M.J., Sullivan, J.M.: A Dual Mesh Scheme for Finite Element Based Reconstruction Algorithm. IEEE Trans. on Medical Imaging 14, 504–514 (1995)CrossRefGoogle Scholar
  5. 5.
    Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publishers, Inc, San Francisco (2001)Google Scholar
  6. 6.
    Lee, K.Y., El-Sharkawi, M.A. (Editors): Modern Heuristic Optimization Techniques with Applications to Power Systems. Wiley, New York (2008)Google Scholar
  7. 7.
    Park, J.-B., Lee, K.-S., Shim, J.-R., Lee, K.Y.: A Particle Swarm Optimization for Economic Dispatch with Nonsmooth Cost Functions. IEEE Trans. on Power Systems 20, 34–42 (2005)CrossRefGoogle Scholar
  8. 8.
    Vlachogiannis, J.G., Lee, K.Y.: Determining Generator Contributions to Transmission System Using Parallel Vector Evaluated Particle Swarm Optimization. IEEE Transactions on Power Systems 20, 1765–1774 (2005)CrossRefGoogle Scholar
  9. 9.
    Heo, J.S., Lee, K.Y., Garduno-Ramirez, R.: Multiobjective Control of Power Plants using Particle Swarm Optimization Techniques. IEEE Transactions on Energy Conversion 21, 552–561 (2006)CrossRefGoogle Scholar
  10. 10.
    Vlachogiannis, J.G., Lee, K.Y.: A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems. IEEE Transactions on Power Systems 21, 1718–1728 (2006)CrossRefGoogle Scholar
  11. 11.
    Park, J.-B., Jeong, Y.-W., Shin, J.-R., Lee, K.Y., Kim, J.-H.: A Hybrid Particle Swarm Optimization Employing Crossover Operation for Economic Dispatch Problems with Valve-point Effects. Engineering Intelligent Systems for Electrical Engineering and Communications 15, 69–74 (2007)Google Scholar
  12. 12.
    Vlachogiannis, J.G., Lee, K.Y.: Economic Dispatch – A Comparative Study on Heuristic Optimization Techniques with an Improved Coordinated Aggregation-Based PSO. IEEE Transactions on Power Systems 24, 991–1001 (2005)CrossRefGoogle Scholar
  13. 13.
    Spall, J.C.: Genetic Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, Chichester (1989)Google Scholar
  14. 14.
    Ko, H.-S., Lee, K.Y., Kim, H.-C.: Electricity Price Prediction Model Based on Simultaneous Perturbation Stochastic Approximation. Journal of Electrical Engineering & Technology 3, 14–19 (2008)Google Scholar
  15. 15.
    Ko, H.-S., Lee, K.Y., Kim, H.-C.: A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers. International Journal of Control, Automation, and Systems 6, 506–514 (2008)Google Scholar
  16. 16.
    Kim, H.C., Boo, C.J., Lee, Y.J.: A SPSA Approach to Image Reconstruction in Electrical Impedance Tomography. J. of the Korean Institute of Illuminating and Electrical Installation Engineers. 3, 23–28 (2004)Google Scholar
  17. 17.
    Vauhkonen, M.: Electrical Impedance Tomography and Priori Information. Kuopio Univerisity Publications Co. Natural and Environmental Sciences 62 (1997)Google Scholar
  18. 18.
    Murai, T., Kagawa, Y.: Electrical Impedance Computed Tomography Based on a Finite Element Model. IEEE Trans. on Biomedical Engineering 32, 177–184 (1985)CrossRefGoogle Scholar
  19. 19.
    Cohen-Bacrie, C., Goussard, Y., Guardo, R.: Regularized Reconstruction in Electrical Impedance Tomography Using a Variance Uniformization Constraint. IEEE Trans. on Medical Imaging 16, 170–179 (1997)CrossRefGoogle Scholar
  20. 20.
    Kim, H.C., Boo, C.J.: Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 856–859. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kim, M.C., Kim, S., Kim, K.Y., Lee, J.H., Lee, Y.J.: Reconstruction of Particle Concentration Distribution in Annular Couette Flow Using Electrical Impedance Tomography. J. Ind. Eng. Chem. 7, 341–347 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chang-Jin Boo
    • 1
  • Ho-Chan Kim
    • 1
  • Min-Jae Kang
    • 1
  • Kwang Y. Lee
    • 2
  1. 1.Department of Electrical EngineeringJeju National UniversityKorea
  2. 2.Department of Electrical and Computer EngineeringBaylor UniversityUSA

Personalised recommendations