Advertisement

A Cellular Automata Based Approach for Prediction of Hot Mudflow Disaster Area

  • Kohei Arai
  • Achmad Basuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)

Abstract

A Novel cellular automata’s based approach for prediction of hot mudflow disaster is proposed. A prediction model for hot mudflow based on fluid dynamic is proposed because hot mudflow spread like fluid dynamic with velocity, viscosity and thermal flow parameters. We use much simpler cellular automata’s approach with adding some probabilistic parameter because that is relatively simple and have a good enough performance for visualization of fluid dynamics. We add some new rules to represent hot mudflow movement such as moving rule, precipitation rule, and absorption rule.

The prediction results show high accuracy of elevation changes at the predicted points and its surrounding areas. We compare these predicted results to the digital elevation map derived from ASTER/DEM. Some period maps to evaluate the prediction accuracy of the proposed method.

Keywords

hot mudflow prediction model cellular automata Gaussian function fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harsaputra, I.: Govt. weighs options for battling the sludge, The Jakarta Post, Comments and Prospects, May 29 (2007), http://mudflow-sidoarjo.110mb.com (retrieved 11.06.07)
  2. 2.
    Sjahroezah, A.: Environmental Impact of the hot mud flow in Sidoarjo, East Java. The SPE Luncheon Talk, April 19 (2007)Google Scholar
  3. 3.
    Argentini, G.: A first approach for a possible cellular automaton model of fluids dynamic. New Technologies & Models, Information & Communication Technology Department Riello Group, Legnago (Verona), Italy (February 2003)Google Scholar
  4. 4.
    Vicari, A., Alexis, H., Negro, C.D., Coltelli, M., Marsella, M., Proietti, C.: Modeling of the 2001 Lava Flow at Etna Volcano by a Cellular Automata Approach. Environmental Modelling & Software 22, 1465–1471 (2007)CrossRefGoogle Scholar
  5. 5.
    Emanuel, G.: Analytical fluid dynamics, 2nd edn., pp. 6–7. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  6. 6.
    Margolus, N., Toffoli, T., Vichniac, G.: Cellular Automata Supercomputers for Fluid-Dynamics Modeling. The American Physical Review Letters 56(16) (April 21, 1986)Google Scholar
  7. 7.
    Chopard, B., Luthi, P., Masselot, A.: Cellular Automata and Lattice Boltzmann Techniques: An Approach to Model and Simulate Complex Systems. In: Proceeding of Advances in Physics Conference (1998)Google Scholar
  8. 8.
    Ghazali, J.N., Kamsin, A.: A Real Time Simulation of Flood Hazard. In: Fifth International Conference on Computer Graphics, Imaging and Visualization, pp. 393–397. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  9. 9.
    Yu, T., Lee, S.: Evolving Cellular Automata To Model Fluid Flow In Porous Media. In: Proceedings NASA/DoD Conference on Evolvable Hardware, pp. 210–217 (2002)Google Scholar
  10. 10.
    Avolio, M.V., Di Gregorio, S., Mantovaniz, F., Pasuto, A., Rongo, R., Silvano, S., Spataro, W.: Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. JAG l 2(1), 41–50 (2000)Google Scholar
  11. 11.
    D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R.: A Cellular Automata Model for Soil Erosion by Water. Physis and Chemistry of the Earth, EGS, B 26(1), 33–39 (2001)Google Scholar
  12. 12.
    Rinaldi, P.R., Dalponte, D.D., Veénere, M.J.: Alejandro Clausse, Cellular automata algorithm for simulation of surface flows in large plains. Simulation Modelling Practice and Theory 15, 315–327 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kohei Arai
    • 1
  • Achmad Basuki
    • 1
  1. 1.Dept. of Information ScienceSaga UniversitySagaJapan

Personalised recommendations