Skip to main content

Agent Based Evacuation Model with Car-Following Parameters by Means of Cellular Automata

  • Conference paper
Computational Science and Its Applications – ICCSA 2010 (ICCSA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6017))

Included in the following conference series:

  • 1216 Accesses

Abstract

An agent based evacuation model with car-following parameters for micro traffic by means of cellular automata is proposed. The model features smart drivers who have a concern the distance between the driver and the surrounding cars. Such drivers are called agents. Agents lead the other cars not only in an ordinary case but also in the case of evacuations. We put the smart drivers and the agent drivers into the car-following parameters of traffic model. We applied it in the case of evacuation. Experimental simulation results show the effectiveness of reducing the evacuation time by the agents. It also is found the effectiveness increases in accordance with increasing of the number of agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal Physics I, France 2, 2221–2229 (1992)

    Article  Google Scholar 

  2. Nagel, K.: Particle hopping models and traffic flow theory. Phys. Rev. E 53, 4655–4672 (1996)

    Article  Google Scholar 

  3. Sugiman, T., Misumi, J.: Development of a new evacuation method for emergencies: Control of collective behavior by emergent small groups. J. Appl. Psychol. 73, 3–10 (1988)

    Article  Google Scholar 

  4. Stern, E., Sinuany-Stern, Z.: A behavioral-based simulation model for urban evacuation. Pap. Reg. Sci. Assoc. 66, 87–103 (1989)

    Article  Google Scholar 

  5. Sheffi, Y., Mahmassani, H., Powell, W.: A transportation network evacuation model. Transport Res. A-Pol. 16, 209–218 (1982)

    Article  Google Scholar 

  6. Hobeika, A.G., Jamei, B.: MASSVAC: A model for calculating evacuation times under natural disaster. Emerg. Plann, Simulation Series 15, 23–28 (1985)

    Google Scholar 

  7. Cova, T.J., Church, R.L.: Modeling community evacuation vulnerability using GIS. International Journal Geographic Information Science 11, 763–784 (1997)

    Article  Google Scholar 

  8. Deadman, P.J.: Modeling individual behavior and group performance in an intelligent agent-based simulation of the tragedy of the commons. J. Environ. Manage. 56, 159–172 (1999)

    Article  Google Scholar 

  9. Teodorovic, D.A.: Transport modeling by multi-agent systems: A swarm intelligence approach. Transport Plan. Techn. 26, 289–312 (2003)

    Article  Google Scholar 

  10. Church, R.L., Sexton, R.M.: Modeling small area evacuation: Can existing transportation infrastructure impede public safety? Caltrans Testbed Center for Interoperability Task Order 3021Report, Vehicle Intelligence & Transportation Analysis Laboratory, University of California, Santa Barbara

    Google Scholar 

  11. Cova, T.J., Johnson, J.P.: Micro simulation of neighborhood evacuations in the urban-wild land interface. Environ. Plann. A 34, 2211–2229 (2002)

    Article  Google Scholar 

  12. Chen, X., Zhan, F.B.: Agent-based modeling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies. Journal of the Operational Research Society 59, 25–33 (2008)

    Article  MATH  Google Scholar 

  13. Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Physics Reports 419, 1–64 (2005)

    Article  MathSciNet  Google Scholar 

  14. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  15. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  16. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101-1–017101-4 (2001)

    Article  Google Scholar 

  17. Ge, X.H., Cheng, R.J., Li, Z.P.: Two velocity difference model for a car following theory. Physica A 387, 5239–5245 (2008)

    Article  Google Scholar 

  18. Immers, L.H., Logghe, S.: Traffic Flow Theory, Faculty of Engineering, Department of Civil Engineering, Section Traffic and Infrastructure. In: Kasteelpark Arenberg, B-3001 Heverlee, Belgium, vol. 40 (2002)

    Google Scholar 

  19. Kretz, T., Mosbach: Pedestrian Traffic, Simulation and Experiment, Doctor Dissertation, Vom Fachbereich Physik der Duisburg-Essen University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arai, K., Harsono, T. (2010). Agent Based Evacuation Model with Car-Following Parameters by Means of Cellular Automata. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12165-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12165-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12164-7

  • Online ISBN: 978-3-642-12165-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics