Development of Quadruple Precision Arithmetic Toolbox QuPAT on Scilab

  • Tsubasa Saito
  • Emiko Ishiwata
  • Hidehiko Hasegawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)


When floating point arithmetic is used in numerical computation, cancellation of significant digits, round-off errors and information loss cannot be avoided. In some cases it becomes necessary to use multiple precision arithmetic; however some operations of this arithmetic are difficult to implement within conventional computing environments. In this paper we consider implementation of a quadruple precision arithmetic environment QuPAT (Quadruple Precision Arithmetic Toolbox) using the interactive numerical software package Scilab as a toolbox. Based on Double-Double (DD) arithmetic, QuPAT uses only a combination of double precision arithmetic operations. QuPAT has three main characteristics: (1) the same operator is used for both double and quadruple precision arithmetic; (2) both double and quadruple precision arithmetic can be used at the same time, and also mixed precision arithmetic is available; (3) QuPAT is independent of which hardware and operating systems are used. Finally we show the effectiveness of QuPAT in the case of analyzing a convergence property of the GCR(m) method for a system of linear equations.


quadruple precision arithmetic mixed precision Scilab 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey, D.H.: QD (C++ / Fortran-90 double-double and quad-double package),
  2. 2.
    Dekker, T.J.: A Floating-Point Technique for Extending the Available Precision. Numer. Math. 18, 224–242 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hida, Y., Li, X.S., Bailey, D.H.: Quad-double arithmetic: Algorithms, Implementation, and application. Technical Report LBNL-46996, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (2000)Google Scholar
  4. 4.
    Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for Quad-Double Precision Floating Point Arithmetic. In: Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pp. 155–162 (2001)Google Scholar
  5. 5.
    Knuth, D.E.: The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1969)zbMATHGoogle Scholar
  6. 6.
    Kotakemori, H., Fujii, A., Hasegawa, H., Nishida, A.: Stabilization of Krylov subspace methods using fast quadruple-precision operation. Transactions of JSCES 12, 631–634 (2007) (in Japanese)Google Scholar
  7. 7.
  8. 8.
    Nakasato, N., Ishikawa, T., Makino, J., Yuasa, F.: Fast Quad-Precision Operations On Manycore Accelerators, IPSJ SIG Technical Report (2009) (in Japanese)Google Scholar
  9. 9.
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tsubasa Saito
    • 1
  • Emiko Ishiwata
    • 2
  • Hidehiko Hasegawa
    • 3
  1. 1.Graduate School of ScienceTokyo University of ScienceJapan
  2. 2.Tokyo University of ScienceJapan
  3. 3.University of TsukubaJapan

Personalised recommendations