Analysis of an Implicitly Restarted Simpler GMRES Variant of Augmented GMRES

  • Ravindra Boojhawon
  • Desire Yannick Tangman
  • Kumar Dookhitram
  • Muddun Bhuruth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)


We analyze a Simpler GMRES variant of augmented GMRES with implicit restarting for solving nonsymmetric linear systems with small eigenvalues. The use of a shifted Arnoldi process in the Simpler GMRES variant for computing Arnoldi basis vectors has the advantage of not requiring an upper Hessenberg factorization and this often leads to cheaper implementations. However the use of a non-orthogonal basis has been identified as a potential weakness of the Simpler GMRES algorithm. Augmented variants of GMRES also employ non-orthogonal basis vectors since approximate eigenvectors are added to the Arnoldi basis vectors at the end of a cycle and in case the approximate eigenvectors are ill-conditioned, this may have an adverse effect on the accuracy of the computed solution. This problem is the focus of our paper where we analyze the shifted Arnoldi implementation of augmented GMRES with implicit restarting and compare its performance and accuracy with that based on the Arnoldi process. We show that augmented Simpler GMRES with implicit restarting involves a transformation matrix which leads to an efficient implementation and we theoretically show that our implementation generates the same subspace as the corresponding GMRES variant. We describe various numerical tests that indicate that in cases where both variants are successful, our method based on Simpler GMRES keeps comparable accuracy as the augmented GMRES variant. Also, the Simpler GMRES variants perform better in terms of computational time required.


Nonsymmetric linear systems Augmented GMRES Simpler GMRES Implicit Restarted Arnoldi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boojhawon, R., Bhuruth, M.: Restarted Simpler GMRES augmented with harmonic Ritz vectors. Future Generation Computer Systems 20, 389–397 (2004)CrossRefGoogle Scholar
  2. 2.
    Boojhawon, R., Bhuruth, M.: Implementing GMRES with Deflated Restarting via the shifted Arnoldi Process. In: Proceedings of the 2006 Conference on Computational and Mathematical Methods on Science and Engineering, pp. 133–152 (2006)Google Scholar
  3. 3.
    Drkosova, J., Greenbaum, A., Rozloznik, M., Strakos, Z.: Numerical stability of GMRES. BIT 35, 309–330 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Goossens, S., Roose, D.: Ritz and harmonic Ritz values and the convergence of FOM and GMRES. Numer. Lin. Alg. Appl. 6, 281–293 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Greenbaum, A., Rozloznik, M., Strakos, Z.: Numerical behaviour of modified Gram-Schmidt GMRES implementation. BIT 37, 709–719 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)zbMATHGoogle Scholar
  7. 7.
    Jiranek, P., Rozloznik, M., Gutknecht, M.: How to make Simpler GMRES and GCR more Stable. SIAM J. Matrix Anal. Appl. 30(4), 1483–1499 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Liesen, J., Rozloznik, M., Strakos, Z.: Least squares residuals and minimal residual methods. SIAM J. Sci. Comput. 23, 1503–1525 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Morgan, R.: A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl. 16(4), 1154–1171 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Morgan, R.: Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J. Matrix Anal. Appl. 21(4), 1112–1135 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Morgan, R.B.: GMRES with deflated restarting. SIAM J. Sci. Comp. 24, 20–37 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 14, 279–316 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rozloznik, M.: Numerical Stability of the GMRES Method. PhD thesis, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (1996)Google Scholar
  14. 14.
    Rozloznik, M., Strakos, Z.: Variants of the residual minimizing Krylov space methods. In: Proceedings of the XI th Summer School Software and Algorithms of Numerical Mathematics, pp. 208–225 (1995)Google Scholar
  15. 15.
    Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 865–869 (1986)MathSciNetGoogle Scholar
  16. 16.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Walker, H., Zhou, L.: A Simpler GMRES. Numer. Lin. Alg. Appl. 1, 571–581 (1992)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ravindra Boojhawon
    • 1
  • Desire Yannick Tangman
    • 1
  • Kumar Dookhitram
    • 1
  • Muddun Bhuruth
    • 1
  1. 1.Department of MathematicsUniversity of Mauritius, ReduitMauritius

Personalised recommendations