Advertisement

Diagnosis of Learning Styles Based on Active/Reflective Dimension of Felder and Silverman’s Learning Style Model in a Learning Management System

  • Ömer Şimşek
  • Nilüfer Atman
  • Mustafa Murat İnceoğlu
  • Yüksel Deniz Arikan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)

Abstract

Learner centered education is important both in point of face to face and Web based learning. Due to this importance, diagnosis of learning styles of students in web based or web enhanced educational settings is important as well. This paper presents prediction of learning styles by means of monitoring learner interface interactions. A mathematics course executed on a learning management system (Moodle) was monitored and learning styles of the learners were analyzed in point of active/reflective dimension of Felder and Silverman Learning Styles Model. The data from learner actions were analyzed through literature based automatic student modeling. The results from Index of Learning Styles and predicted learning styles were compared. For active/reflective dimension 79.6% precision was achieved.

Keywords

Learning styles Felder and Silverman’s Index of Learning Styles Moodle Web-enhanced learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atman, N., Inceoğlu, M.M., Aslan, B.G.: Learning Styles Diagnosis Based On Learner Behaviors in Web Based Learning. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) Computational Science and Its Applications – ICCSA 2009. LNCS, vol. 5593, pp. 900–909. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bajraktarevic, N., Hall, W., Fullick, P.: Incorporating Learning Styles in Hypermedia Environment: Empirical Evaluation. In: de Bra, P., Davis, H.C., Kay, J., Schraefel, M. (eds.) Proceedings of the Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 41–52. Eindhoven University, Nottingham (2003)Google Scholar
  3. 3.
    Graf, S., Lin, T.: Kinshuk: The Relationship Between Learning Styles and Cognitive Traits. Computers in Human Behavior 24, 122–137 (2008)CrossRefGoogle Scholar
  4. 4.
    Kolb, A.Y., Kolb, D.A.: The Kolb Learning Style Inventory - Version 3.1, Technical Specification. Hay Group, Boston (2005)Google Scholar
  5. 5.
    Dunn, R., Dunn, K., Price, G.E.: Learning Style Inventory, Lawrence, KS. Price Systems (1996)Google Scholar
  6. 6.
    Honey, P., Mumford, A.: The Learning Styles Helper‘s Guide. Peter Honey Publications Ltd., Maidenhead (2006)Google Scholar
  7. 7.
    Myers, I.B., McCaulley, M.H.: Manual: A Guide to the Development and Use of the Myers-Briggs Type Indicator. Consulting Psychologists Press, Palo Alto (1998)Google Scholar
  8. 8.
    Kuljis, J., Liu, F.: A Comparison of Learning Style Theories on the Suitability for Elearning. In: Hamza, M.H. (ed.) Proceedings of the Iasted Conference on Web Technologies, Applications, and Services, pp. 191–197. ACTA Press (2005)Google Scholar
  9. 9.
    Felder, R., Silverman, L.: Learning and Teaching Styles. Journal of Engineering Education 94(1), 674–681 (1988)Google Scholar
  10. 10.
    Felder, R., Henriques, E.R.: Learning and Teaching Styles In Foreign and Second Language Education. Foreign Language Annals 28(1), 21–31 (1995)CrossRefGoogle Scholar
  11. 11.
    Felder, R.M.: Matters of Style. ASEE Prism 6(4), 18–23 (1996)Google Scholar
  12. 12.
    García, P., Amandi, A., Schiaffino, S., Campo, M.: Evaluating Bayesian Networks Precision for Detecting Students Learning Styles. Computers &Education 49(3), 794–808 (1995)CrossRefGoogle Scholar
  13. 13.
    Felder, R.M., Soloman, B.A.: Index of Learning Styles Questionnaire (October 2009), http://www.engr.ncsu.edu/learningstyles/ilsweb.html
  14. 14.
    Zywno, M.S.: A Contribution to Validation Score Meaning for Felder-Soloman‘s Index of Learning Styles. In: Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition (2003)Google Scholar
  15. 15.
    Carver, C.A., Howard, R.A., Lane, W.D.: Addressing Different Learning Styles through Course Hypermedia. IEEE Transactions on Education 42(1), 33–38 (1999)CrossRefGoogle Scholar
  16. 16.
    Stern, M.K., Steinberg, J., Lee, H.I., Padhye, J., Kurose, J.: Manic: Multimedia Asynchronous Networked Individualized Courseware. In: Proceedings of the World Conference on Educational Multimedia/Hypermedia and World Conference on Educational Telecommunications (Ed-Media/Ed-Telecom), Calgary, Canada, pp. 1002–1007 (1997)Google Scholar
  17. 17.
    Peña, C.-I., Marzo, J.-L., de la Rosa, J.-L.: Intelligent Agents in a Teaching and Learning Environment on the Web. In: Petrushin, V., Kommers, P., Kinshuk, G.I. (eds.) Proceedings of the International Conference on Advanced Learning Technologies, pp. 21–27. IEEE Learning Technology Task Force, Palmerston North (2002)Google Scholar
  18. 18.
    Stash, N., Cristea, A., de Bra, P.: Authoring of Learning Styles in Adaptive Hypermedia: Problems and Solutions. In: Proceedings of the International World Wide Web Conference, pp. 114–123. ACM Press, New York (2004)Google Scholar
  19. 19.
    Carro, R.M., Pulido, E., Rodriguez, P.: Tangow: A Model for Internet-Based Learning. International Journal of Continuing Engineering Education and Lifelong Learning 11(1/2), 25–34 (2001)CrossRefGoogle Scholar
  20. 20.
    Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interaction 11, 87–110 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Nwana, H.: User Modeling and user adapted interaction in an intelligent tutoring system. User Modeling and User-Adapted Interaction 1(1), 1–32 (1991)CrossRefGoogle Scholar
  22. 22.
    Graf, S.: Adaptivity in Learning Management Systems Focusing On Learning Styles. Unpublished Ph. D. Thesis (2007)Google Scholar
  23. 23.
    Cha, H.J., Kim, Y.S., Park, S.H., Yoon, T.B., Jung, Y.M., Lee, J.-H.: Learning Style Diagnosis Based on User Interface Behavior for the Customization of Learning Interfaces in an Intelligent Tutoring System. In: Ikeda, M., Ashley, K.D., Chan, W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 513–524. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Rovai, A.P., Barnum, K.T.: On-Line Course Effectiveness: An Analysis of Student Interactions and Perceptions of Learning. Journal of Distance Education 18(1), 57–73 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ömer Şimşek
    • 1
  • Nilüfer Atman
    • 1
  • Mustafa Murat İnceoğlu
    • 1
  • Yüksel Deniz Arikan
    • 1
  1. 1.Department of Computer and Instructional TechnologiesEge UniversityBornovaTurkey

Personalised recommendations