Advertisement

Computational Study of Compressive Loading of Carbon Nanotubes

  • Yang Yang
  • William W. Liou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)

Abstract

A reduced-order general continuum method is used to examine the mechanical behavior of single-walled carbon nanotubes (CNTs) under compressive loading and unloading conditions. Quasi-static solutions are sought where the total energy of the system is minimized with respect to the spatial degree of freedom. We provide detailed buckled configurations for four different types of CNTs and show that, among the cases studied, the armchair CNT has the strongest resistance to the compressive loading. It is also shown that the buckled CNT will significantly lose its structural strength with the zigzag lattice structure. The unloading post-buckling of CNT demonstrates that even after the occurrence of buckling the CNT can still return to its original state making its use desirable in fields such as synthetic biomaterials, electromagnetic devices, or polymer composites.

Keywords

component carbon nanotube finite element method mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    Iijima, S., Maiti, C.J.: Structural flexibility of carbon nanotubes. Journal of Chemical Physics 104, 2089–2092 (1996)CrossRefGoogle Scholar
  3. 3.
    Qian, D., Wagner, G.J., Liu, W.K., Yu, M., Ruoff, R.S.: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55(6), 495–532 (2002)CrossRefGoogle Scholar
  4. 4.
    Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., Ajayan, P.M.: Organized assembly of carbon nanotubes. Nature 416, 495–496 (2002)CrossRefGoogle Scholar
  5. 5.
    Harris, P.J.F.: Carbon nanotubes and related structures. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  6. 6.
    Reich, S., Thomsen, C., Maultzsch, J.: Carbon nanotubes, basic concepts and physical properties. WILEY-VCH, Chichester (2004)Google Scholar
  7. 7.
    Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters 76(14), 2511–2514 (1996)CrossRefGoogle Scholar
  8. 8.
    Li, C., Thostenson, E.T., Chou, T.-W.: Sensors and actuators based on carbon nanotubes and their composites: A review. Composites Science and Technology 68, 1227–1249 (2008)CrossRefGoogle Scholar
  9. 9.
    Waters, J.F., Guduru, P.R., Jouzi, M., Xu, J.M., Hanlon, T., Suresh, S.: Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Applied Physica Letters 87, 103–109 (2005)Google Scholar
  10. 10.
    Kao, C.C., Young, R.J.: Modeling the stress transfer between carbon nanotubes and a polymer matrix during cyclic deformation. In: Pyrz, R., Rauche, J.C. (eds.) IUTAM Symposium on Modelling Nanomaterials and Nanosystems, pp. 211–220 (2009)Google Scholar
  11. 11.
    Wang, J., Gutierrez, M.S.: Molecular simulations of cyclic loading behavior of carbon nanotubes using the atomistic finite element method. Journal of Nanomaterials (2009)Google Scholar
  12. 12.
    Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. Journal of Mechanics and Physics of Solids 50, 1941–1977 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B 42(15), 9458–9471 (1990)CrossRefGoogle Scholar
  14. 14.
    Cirak, F., Ortiz, M., Schröder, P.: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering 47, 2039–2072 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philosophical Magazine 73(6), 1529–1563 (1996)CrossRefGoogle Scholar
  16. 16.
    Cirak, F., Ortiz, M., Pandolfi, A.: A cohesive approach to thin-shell fracture and fragmentation. Comput. Methods Appl. Mech. Engrg. 194, 2604–2618 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    Deiterding, R., Cirak, F., Mauch, S.P., Meiron, D.I.: A virtual test facility for simulating detonation-induced fracture of thin flexible shells. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 122–130. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Cirak, F., Deiterding, R., Mauch, S.P.: Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations. Computers and Structures 85, 11–14 (2007)CrossRefGoogle Scholar
  19. 19.
    do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs (1976)zbMATHGoogle Scholar
  20. 20.
    Yang, Y.: Atomistic-based finite element simulation of carbon nanotubes. Ph.D. dissertation, Western Michigan University, Kalamazoo, MI 49008 (December 2008)Google Scholar
  21. 21.
    Sinnott, S.B., Shenderova, O.A., White, C.T., Brenner, D.W.: Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon 36(1-2), 1–9 (1998)CrossRefGoogle Scholar
  22. 22.
    Byrd, R.H., Lu, P., Noceda, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM, J. Scientific Computing 16(5), 1190–1208 (1995)zbMATHCrossRefGoogle Scholar
  23. 23.
    Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: L-bfgs-b: a limited memory fortran code for solving bound constrained optimization problems. EECS Department, Northwestern University, Tech. Rep. NAM-11 (1994)Google Scholar
  24. 24.
    Dumitrica, T., Hua, M., Yakobson, B.I.: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. PNAS 103(16), 6105–6109 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yang Yang
    • 1
  • William W. Liou
    • 1
  1. 1.Department of Aeronautical and Mechanical EngineeringWestern Michigan UniversityKalamazooU.S

Personalised recommendations