Fast Forth Power and Its Application in Inversion Computation for a Special Class of Trinomials

  • Yin Li
  • Gong-liang Chen
  • Jian-hua Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)


This contribution is concerned with an improvement of Itoh and Tsujii’s algorithm for inversion in finite field GF(2 m ) using polynomial basis. Unlike the standard version of this algorithm, the proposed algorithm uses forth power and multiplication as main operations. When the field is generated with a special class of irreducible trinomials, an analytical form for fast bit-parallel forth power operation is presented. The proposal can save 1T X compared with the classic approach, where T X is the delay of one 2-input XOR gate. Based on this result, the proposed algorithm for inversion achieves even faster performance, roughly improves the delay by \(\frac{m}{2}T_X\), at the cost of slight increase in the space complexity compared with the standard version. To the best of our knowledge, this is the first work that proposes the use of forth power in computation of multiplicative inverse using polynomial basis and shows that it can be efficient.


Multiplicative inverse Itoh-Tsujii algorithm forth power 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blake, I., Seroussy, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  2. 2.
    Sunar, B., Koç, Ç.K.: Mastrovito Multiplier for All Trinomials. IEEE Trans. Comput. 48(5), 522–527 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Fournaris, A.P., Koufopavlou, O.: Applying systolic multiplication-inversion architectures based on modified extended Euclidean algorithm for GF(2k) in elliptic curve cryptography. Comput. Electr. Eng. 33(5-6), 333–348 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Guajardo, J., Paar, C.: Itoh-Tsujii Inversion in Standard Basis and Its Application in Cryptography. Codes. Des. Codes Cryptography 25(2), 207–216 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Guo, J., Wang, C.: Systolic Array Implementation of Euclid’s Algorithm for Inversion and Division in GF (2m). IEEE Trans. Comput. 47(10), 1161–1167 (1998)CrossRefGoogle Scholar
  6. 6.
    Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wu, H.: Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis. IEEE Trans. Comput. 51(7), 750–758 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Yan, Z., Sarwate, D.V.: New Systolic Architectures for Inversion and Division in GF(2m). IEEE Trans. Comput. 52(11), 1514–1519 (2003)Google Scholar
  9. 9.
    Rodríguez-Henríquez, F., Morales-Luna, G., Saqib, N., Cruz-Cortés, N.: Parallel Itoh-Tsujii multiplicative inversion algorithm for a special class of trinomials. Des. Codes Cryptography 45(1), 19–37 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.: VLSI Architectures for Computing Multiplications and Inverses in GF(2m). IEEE Trans. Comput. 34(8), 709–717 (1985)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fan, H., Dai, Y.: Fast Bit-Parallel GF(2n) Multiplier for All Trinomials. IEEE Trans. Comput. 54(5), 485–490 (2005)Google Scholar
  12. 12.
    Sunar, B., Koç, Ç.K.: An Efficient Optimal Normal Basis Type II Multiplier. IEEE Trans. Comput. 50(1), 83–87 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Rodríguez-Henríquez, F., Morales-Luna, G., López, J.: Low-Complexity Bit-Parallel Square Root Computation over GF(2m) for All Trinomials. IEEE Trans. Comput. 57(4), 472–480 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    FIPS 186-2. Digital Signature Standard (DSS). Federal Information Processing Standards Publication 186-2, National Institute of Standards and Technology (2000),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yin Li
    • 1
  • Gong-liang Chen
    • 1
  • Jian-hua Li
    • 1
    • 2
  1. 1.School of Information Security Engineering 
  2. 2.Department of Electronic EngineeringShanghai Jiaotong UniversityShanghaiP.R. China

Personalised recommendations