Advertisement

Self-similar Hierarchical Regular Lattices

  • Carlo Cattani
  • Ettore Laserra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)

Abstract

This paper deals with the topological-metric structure of a network made by a family of self-similar hierarchical regular lattices. We derive the basic properties and give a suitable definition of self-similarity on lattices. This concept of self-similarity is shown on some classical (omothety) and more recent models (Sierpinski tesselations and Husimi cacti). Both the metric and the geometric properties of the lattice will be intrinsically defined.

Keywords

Simplicial Complex Vertex Versus Sierpinski Gasket Pascal Triangle Exciton Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakhoum, E., Toma, C.: Mathematical Transform of Travelling-Wave Equations and Phase Aspects of Quantum Interaction. Mathematical Problems in Engineering 2010 (2010), Article ID 695208, doi:10.1155/2010/695208Google Scholar
  2. 2.
    Barabasi, A.-L.: Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. Plume Books (2003)Google Scholar
  3. 3.
    Barabasi, A.-L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Physica A 299, 559–564 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Boettcher, S., Goncalves, B., Azaret, J.: Geometry and dynamics for hierarchical regular networks. Journal of Physics A 41(33), 335003 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Blumen, A., Bierbaum, V., Mülken, O.: Coeherent dynamics on hierarchical systems. Physica A 371(1), 10–15 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Brewin, L.: A continuous time formulation of the Regge Calculus. Class. Quantum Grav. 5, 839–887 (1988)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cattani, C., Laserra, E.: Symplicial geometry of crystals. J. Interdiscip. Math. 2, 143–151 (1999)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Cattani, C., Laserra, E.: Discrete Electromagnetic Action On A Gravitational Simplicial Net. J. Interdiscip. Math. 3, 123–132 (2000)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Drummond, I.T.: Regge-Palatini Calculus. Nucl. Phys. 273 B, 125–136 (1986)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fomenko, A.T.: Differential Geometry and Topology, Consultant Bureau, New York, London (1987)Google Scholar
  11. 11.
    Gibson, L.J., Ashby, M.F.: Cellular solids: Structure and properties. Pergamon Press, Oxford (1988)zbMATHGoogle Scholar
  12. 12.
    Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, Reading (1992)Google Scholar
  13. 13.
    Jourjine, A.N.: Discrete gravity without coordinates. Phys. Rev. D (3) 35(6), 2983–2986 (1987)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kenkre, V.M., Reineker, P.: Exciton Dynamics in Molecular Crystals and Aggregates. Springer, Berlin (1982)Google Scholar
  15. 15.
    Misner, C.W., Wheeler, J.A., Thorne, K.S.: Regge Calculus. In: Gravitation, vol. 42, pp. 1166–1179. W. H. Freeman and Company, New York (1973)Google Scholar
  16. 16.
    Naber, G.L.: Topological Methods in Euclidean spaces. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  17. 17.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford Univ. Press, Oxford (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Regge, T.: General relativity without coordinates. Il nuovo Cimento 19(3), 558–571 (1961)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Singer, I.M., Thorpe, E.J.A.: Lecture Notes on Elementary Topology and Geometry. Scott Foresman and Company, Glenview (1967)zbMATHGoogle Scholar
  20. 20.
    Strogatz, S.: Exploring complex networks. Nature 410, 268–273 (2001)CrossRefGoogle Scholar
  21. 21.
    Toma, G.: Specific Differential Equations for Generating Pulse Sequences. Mathematical Problems in Engineering 2010 (2010), Article ID 324818, doi:10.1155/2010/324818Google Scholar
  22. 22.
    Vögtle, F. (ed.): Dendrimers. Springer, Berlin (1998)Google Scholar
  23. 23.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small’ world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlo Cattani
    • 1
  • Ettore Laserra
    • 2
  1. 1.diFarmaUniversity of SalernoFiscianoItaly
  2. 2.DMIUniversity of SalernoFiscianoItaly

Personalised recommendations