Skip to main content

Self-similar Hierarchical Regular Lattices

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2010 (ICCSA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6017))

Included in the following conference series:

  • 1173 Accesses

Abstract

This paper deals with the topological-metric structure of a network made by a family of self-similar hierarchical regular lattices. We derive the basic properties and give a suitable definition of self-similarity on lattices. This concept of self-similarity is shown on some classical (omothety) and more recent models (Sierpinski tesselations and Husimi cacti). Both the metric and the geometric properties of the lattice will be intrinsically defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhoum, E., Toma, C.: Mathematical Transform of Travelling-Wave Equations and Phase Aspects of Quantum Interaction. Mathematical Problems in Engineering 2010 (2010), Article ID 695208, doi:10.1155/2010/695208

    Google Scholar 

  2. Barabasi, A.-L.: Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. Plume Books (2003)

    Google Scholar 

  3. Barabasi, A.-L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Physica A 299, 559–564 (2001)

    Article  MATH  Google Scholar 

  4. Boettcher, S., Goncalves, B., Azaret, J.: Geometry and dynamics for hierarchical regular networks. Journal of Physics A 41(33), 335003 (2008)

    Article  MathSciNet  Google Scholar 

  5. Blumen, A., Bierbaum, V., Mülken, O.: Coeherent dynamics on hierarchical systems. Physica A 371(1), 10–15 (2006)

    Article  MathSciNet  Google Scholar 

  6. Brewin, L.: A continuous time formulation of the Regge Calculus. Class. Quantum Grav. 5, 839–887 (1988)

    Article  MathSciNet  Google Scholar 

  7. Cattani, C., Laserra, E.: Symplicial geometry of crystals. J. Interdiscip. Math. 2, 143–151 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Cattani, C., Laserra, E.: Discrete Electromagnetic Action On A Gravitational Simplicial Net. J. Interdiscip. Math. 3, 123–132 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Drummond, I.T.: Regge-Palatini Calculus. Nucl. Phys. 273 B, 125–136 (1986)

    Article  MathSciNet  Google Scholar 

  10. Fomenko, A.T.: Differential Geometry and Topology, Consultant Bureau, New York, London (1987)

    Google Scholar 

  11. Gibson, L.J., Ashby, M.F.: Cellular solids: Structure and properties. Pergamon Press, Oxford (1988)

    MATH  Google Scholar 

  12. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, Reading (1992)

    Google Scholar 

  13. Jourjine, A.N.: Discrete gravity without coordinates. Phys. Rev. D (3) 35(6), 2983–2986 (1987)

    Article  MathSciNet  Google Scholar 

  14. Kenkre, V.M., Reineker, P.: Exciton Dynamics in Molecular Crystals and Aggregates. Springer, Berlin (1982)

    Google Scholar 

  15. Misner, C.W., Wheeler, J.A., Thorne, K.S.: Regge Calculus. In: Gravitation, vol. 42, pp. 1166–1179. W. H. Freeman and Company, New York (1973)

    Google Scholar 

  16. Naber, G.L.: Topological Methods in Euclidean spaces. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  17. Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford Univ. Press, Oxford (2001)

    Book  MATH  Google Scholar 

  18. Regge, T.: General relativity without coordinates. Il nuovo Cimento 19(3), 558–571 (1961)

    Article  MathSciNet  Google Scholar 

  19. Singer, I.M., Thorpe, E.J.A.: Lecture Notes on Elementary Topology and Geometry. Scott Foresman and Company, Glenview (1967)

    MATH  Google Scholar 

  20. Strogatz, S.: Exploring complex networks. Nature 410, 268–273 (2001)

    Article  Google Scholar 

  21. Toma, G.: Specific Differential Equations for Generating Pulse Sequences. Mathematical Problems in Engineering 2010 (2010), Article ID 324818, doi:10.1155/2010/324818

    Google Scholar 

  22. Vögtle, F. (ed.): Dendrimers. Springer, Berlin (1998)

    Google Scholar 

  23. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small’ world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cattani, C., Laserra, E. (2010). Self-similar Hierarchical Regular Lattices. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12165-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12165-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12164-7

  • Online ISBN: 978-3-642-12165-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics