Application of Wavelet-Basis for Solution of the Fredholm Type Integral Equations

  • Carlo Cattani
  • Aleksey Kudreyko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6017)


The paper deals with the application of periodic wavelts as basis functions for solution of the Fredholm type integral equations. We examine a special case for a degenerate kernel and show multiscale solution of an integral equation for a non-degenerate kernel. The benefits of the application of periodic harmonic wavelets are discussed. The approximation error of projection of solution on the space of periodized wavelets is analytically estimated.


Fredholm integral equations integro-differential equation periodized harmonic wavelets degenerate kernels collocation method decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cassell, J.S., Williams, M.M.R.: An integral equation arising in neutron transport theory. Annals of Nuclear Energy 30, 1009–1031 (2003)CrossRefGoogle Scholar
  2. 2.
    Cattani, C.: Multiscale Analysis of wave propagation in composite materials. Mathematical Modelling and Analysis 8(4), 267–282 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cattani, C., Kudreyko, A.: Application of periodized harmonic wavelets towards solution of eigenvalue problems for integral equations. Mathematical Problems in Engineering (2010) (In press)Google Scholar
  4. 4.
    Danfu, H., Xufeng, S.: Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration. Applied Mathematics and Computation 194, 460–466 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Daubechies, I.: Ten Lectures on Wavelets, 377 p. SIAM, Philadelphia (1992)zbMATHGoogle Scholar
  6. 6.
    Polyanin, A.D., Manzhirov, A.V.: Handbook of integral equations, 796 p. CRC Press, London (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Muniandy, S.V., Moroz, I.M.: Galerkin modeling of the Burgers equation using harmonic wavelets. Physics Letters A 235, 352–356 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Newland, D.E.: Harmonic wavelets in vibrations and acoustics. The Royal Society 357, 2607–2625 (1999)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Newland, D.E.: Harmonic wavelet analysis. The Royal Society 443, 203–225 (1993)zbMATHCrossRefGoogle Scholar
  10. 10.
    Newland, D.E.: An Introduction to Random Vibrations. In: Spectral & Wavelet Analysis, 3rd edn. (1993)Google Scholar
  11. 11.
    Morita, T.: Expansion in Harmonic Wavelets of a Periodic Function. Interdiscipl. Inform. Sci. 3(1), 5–12 (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Mallat, S.: A Wavelet Tour of Signal Processing. In: École Polytechnique, Paris, 2nd edn. Academic Press, London (1990)Google Scholar
  13. 13.
    Miroshnichenko, G.P., Petrashen, A.G.: Numerical methods, Saint-Petersburg, 120 p. (2008)Google Scholar
  14. 14.
    Bakhoum, E., Toma, C.: Mathematical Transform of Travelling-Wave Equations and Phase Aspects of Quantum Interaction. Mathematical Problems in Engineering 2010, Article ID 695208(2010)Google Scholar
  15. 15.
    Toma, G.: Specific Differential Equations for Generating Pulse Sequences. Mathematical Problems in Engineering 2010, Article ID 324818 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlo Cattani
    • 1
  • Aleksey Kudreyko
    • 2
  1. 1.diFarmaUniversity of SalernoFiscianoItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of SalernoFiscianoItaly

Personalised recommendations