Skip to main content

Transformation, Reduction and Extrapolation Techniques for Feynman Loop Integrals

  • Conference paper
Computational Science and Its Applications – ICCSA 2010 (ICCSA 2010)

Abstract

We address the computation of Feynman loop integrals, which are required for perturbation calculations in high energy physics, as they contribute corrections to the scattering amplitude for the collision of elementary particles. Results in this field can be used in the verification of theoretical models, compared with data measured at colliders.

We made a numerical computation feasible for various types of one and two-loop Feynman integrals, by parametrizing the integral to be computed and extrapolating to the limit as the parameter introduced in the denominator of the integrand tends to zero. In order to handle additional singularities at the boundaries of the integration domain, the extrapolation can be preceded by a transformation and/or by a sector decomposition. With the goal of demonstrating the applicability of the combined integration and extrapolation methods to a wide range of problems, we give a survey of earlier work and present additional applications with new results. We aim for an automatic or semi-automatic approach, in order to greatly reduce the amount of analytic manipulation required before the numeric approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasiou, C., Beerli, S., Daleo, A.: Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically. JHEP 0705, 71 (2005)

    Google Scholar 

  2. Bélanger, G., Boudjema, F., Fujimoto, J., Ishikawa, T., Kaneko, T., Kato, K., Shimizu, Y.: Automatic calculations in high energy physics and GRACE at one-loop. Physics Reports 430, 117–209 (2006)

    Article  Google Scholar 

  3. Berntsen, J., Espelid, T.O., Genz, A.: Algorithm 698: DCUHRE-an adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Softw. 17, 452–456 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Binoth, T., Heinrich, G.: An automized algorithm to compute infrared divergent multi-loop integrals. Nuclear Physics B 585, 741–759 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bollini, C.G., Giambiagi, J.J.: Dimensional renormalization: the number of dimensions as a regularizing parameter. Nuovo Cimento B 12 20 (1972)

    Google Scholar 

  6. Brezinski, C.: A general extrapolation algorithm. Numerische Mathematik 35, 175–187 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buras, A.J., Czarnecki, A., Misiak, M., Urban, J.: Two-loop matrix element of the current-current operator in the decay BX s γ. Nuclear Physics B(611), 488–502 (2001)

    Google Scholar 

  8. Czarnecki, A., Marciano, W.J.: Electroweak radiative corrections to bs γ. Phys. Rev. Lett. 81(2), 277–280 (1998)

    Article  Google Scholar 

  9. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York (1984)

    MATH  Google Scholar 

  10. de Doncker, E.: Numerical Integration and Asymptotic Expansions. Ph.D. thesis, Katholieke Universiteit Leuven (1980)

    Google Scholar 

  11. de Doncker, E., Li, S., Fujimoto, J., Shimizu, Y., Yuasa, F.: Regularization and extrapolation methods for infrared divergent loop integrals. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 165–171. Springer, Heidelberg (2005)

    Google Scholar 

  12. de Doncker, E., Li, S., Shimizu, Y., Fujimoto, J., Yuasa, F.: Numerical computation of a non-planar two-loop vertex diagram. In: LoopFest, V. (ed.) Stanford Linear Accelerator Center (2006), http://www.conf.slac.stanford.edu/loopfestv/proc/present/DEDONCKER.pdf

  13. de Doncker, E., Shimizu, Y., Fujimoto, J., Yuasa, F.: Computation of loop integrals using extrapolation. Computer Physics Communications 159, 145–156 (2004)

    Article  Google Scholar 

  14. de Doncker, E., Shimizu, Y., Fujimoto, J., Yuasa, F.: Computation of Feynman loop integrals. PAMM - Wiley InterScience Journal 7(1) (2007)

    Google Scholar 

  15. de Doncker, E., Shimizu, Y., Fujimoto, J., Yuasa, F., Cucos, L., Van Voorst, J.: Loop integration results using numerical extrapolation for a non-scalar integral. Nuclear Instuments and Methods in Physics Research Section A 539, 269–273 (2004)

    Article  Google Scholar 

  16. Ferroglia, A., Passarino, G., Passera, M., Uccirati, S.: All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams. Tech. rep., hep-ph/0209219

    Google Scholar 

  17. Ferroglia, A., Passera, M., Passarino, G., Uccirati, S.: Two-loop vertices in quantum field theory: Infrared convergent scalar configurations (2003), hep-ph/0311186

    Google Scholar 

  18. Fleischer, J., Tarasov, O.V.: Calculation of Feynman diagrams from their small momentum expansion. Zeitschrift für Physik C 64, 413–425 (1994)

    Article  Google Scholar 

  19. Ford, W., Sidi, A.: An algorithm for the generalization of the Richardson extrapolation process. SIAM Journal on Numerical Analysis 24, 1212–1232 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fujimoto, J., Shimizu, Y., Kato, K., Oyanagi, Y.: Numerical approach to one-loop integrals. Progress of Theoretical Physics 87(5), 1233–1247 (1992)

    Article  Google Scholar 

  21. Fujimoto, J., Shimizu, Y., Kato, K., Oyanagi, Y.: Numerical approach to two-loop integrals. In: Proc. of the VIIth Workshop on High Energy Physics and Quantum Field Theory (1992)

    Google Scholar 

  22. Fujimoto, J., Ueda, T.: New implementation of the sector decomposition on FORM. In: XII Advanced Computing and Analysis Techniques in Physics Research) poS (ACAT 2008), vol. 120 (2009), ArXiv:0902.2656v1 [hep-ph]

    Google Scholar 

  23. Fujimoto, J., Ueda, T.: New implementation of the sector decomposition on FORM, aCAT08 talk slides (2008), http://indico.cern.ch/conferenceOtherViews.py?confId=34666&view=static&showDate=all&showSession=all&detailLevel=contribution

  24. Genz, A.: The Approximate Calculation of Multidimensional Integrals using Extrapolation Methods. Ph.D. thesis, Univ. of Kent at Canterbury (1975)

    Google Scholar 

  25. Genz, A., Malik, A.: An imbedded family of multidimensional integration rules. SIAM J. Numer. Anal 20, 580–588 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hävie, T.: Generalized Neville-type extrapolation schemes. BIT 19, 204–213 (1979)

    Article  MathSciNet  Google Scholar 

  27. HMLIB: Nucl. Instr. and Meth. A 559, 269 (2006)

    Google Scholar 

  28. Hooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189 (1972)

    Article  Google Scholar 

  29. Hurth, T.: Present status of inclusive rare B decays (2003), hep-ph/0212304, CERN-TH/2002-264, SLAC-PUB-9604

    Google Scholar 

  30. Kawabata, S.: A new version of the multi-dimensional integration and event generation package bases/spring. Computer Physics Communications 88, 309–326 (1995)

    Article  MATH  Google Scholar 

  31. Kurihara, Y.: Dimensionally regularized one-loop tensor integrals with massless internal particles (2005), hep-ph/0504251 v3

    Google Scholar 

  32. Kurihara, Y., Kaneko, T.: Numerical contour integration for loop integrals. Computer Physics Communications 174(7), 530–539 (2006)

    Article  Google Scholar 

  33. Levin, D., Sidi, A.: Two classes of non-linear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comp. 9, 175–215 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, S.: Online Support for Multivariate Integration. PhD dissertation, Western Michigan University (December 2005)

    Google Scholar 

  35. Lyness, J.N.: Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity. Journal of Computational Physics 20, 346–364 (1976)

    Article  MathSciNet  Google Scholar 

  36. Lyness, J.N., de Doncker, E.: On quadrature error expansions part I. Journal of Computational and Applied Mathematics 17, 131–149 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lyness, J.N., de Doncker, E.: On quadrature error expansions II. The full corner singularity. Numerische Mathematik 64, 355–370 (1993)

    Article  MATH  Google Scholar 

  38. Neubert, M.: Renormalization-group improved calculation of the Bx s γ branching ratio. hep-ph 1(16) (2004), 0408179, CLNS 04/1885

    Google Scholar 

  39. Passarino, G.: An approach toward the numerical evaluation of multiloop Feynman diagrams. Nucl. Phys. B 619, 257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Piessens, R., de Doncker, E., Überhuber, C.W., Kahaner, D.K.: QUADPACK, A Subroutine Package for Automatic Integration. Series in Computational Mathematics. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  41. Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys. 34, 1–42 (1955)

    MATH  MathSciNet  Google Scholar 

  42. Sidi, A.: Convergence properties of some nonlinear sequence transformations. Math. Comp. 33, 315–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tarasov, O.V.: An algorithm for small momentum expansion of Feynman diagrams (1995); hep-ph/9505277

    Google Scholar 

  44. Tkachov, F.V.: Algebraic algorithms for multiloop calculations: The first 15 years. What’s next? Nucl. Phys. B 389, 309 (1997)

    Google Scholar 

  45. Vermaseren, J.A.M.: New features of FORM (2000), math-ph/0010025

    Google Scholar 

  46. Wynn, P.: On a device for computing the e m (s n ) transformation. Mathematical Tables and Aids to Computing 10, 91–96 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yasui, Y., Ueda, T., de Doncker, E., Fujimoto, J., Hamaguchi, N., Ishikawa, T., Shimizu, Y., Yuasa, F.: Status reports from the grace group. In: International Colliders Workshop LCWS/ILC (2007), arXiv:0710.2957v1 [hep-ph]

    Google Scholar 

  48. Yuasa, F., de Doncker, E., Fujimoto, J., Hamaguchi, N., Ishikawa, T., Shimizu, Y.: Precise numerical results of IR-vertex and box integration with extrapolation. In: Proc. of the XI ACAT workshop, Advanced Computing and Analysis Techniques in physics research (2007), arXiv:0709.0777v2 [hep-ph]

    Google Scholar 

  49. Yuasa, F., Ishikawa, T., Fujimoto, J., Hamaguchi, N., de Doncker, E., Shimizu, Y.: Numerical evaluation of Feynman integrals by a direct computation method. In: Proc. of the XII ACAT workshop, Advanced Computing and Analysis Techniques in physics research (2008), arXiv:0904.2823

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Doncker, E. et al. (2010). Transformation, Reduction and Extrapolation Techniques for Feynman Loop Integrals. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12165-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12165-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12164-7

  • Online ISBN: 978-3-642-12165-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics