Skip to main content

Communication in Ant–Plant Symbioses

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plant communication abilities are the subject of intensive research. They have been particularly investigated in the context of signalling herbivore activity and responding to these signals. In this chapter, we review the current knowledge on communication between plants and ants in ant–plant symbioses. Chemistry is the preponderant channel in ant–plant communication. Communication is identified in five contexts: the selection of seeds by ants to sow ant-gardens, the detection of the host plant by founding queens, the discrimination of the host plant by the inhabiting ants to prune exogenous vegetation, the selective continuous patrolling on young shoots by workers and the damage-induced ant-mediated plant protection. Implications of communication for the evolutionary ecology of ant–plant symbioses are discussed and directions for future research are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (1998) Leaf damage and associated cues induce aggressive ant recruitment in a neotropical ant–plant. Ecology 79:2100–2112

    Article  Google Scholar 

  • Agrawal AA, Dubin-Thaler BJ (1999) Induced responses to herbivory in the Neotropical ant-plant association between Azteca ants and Cecropia trees: response of ants to potential inducing cues. Behav Ecol Sociobiol 45:47–54

    Article  Google Scholar 

  • Agrawal AA, Rutter MT (1998) Dynamic anti-herbivore defense in ant-plants: the role of induced responses. Oikos 83:227–236

    Article  Google Scholar 

  • Agrawal AA, Salminen JP, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29:1049–1061

    Article  CAS  Google Scholar 

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    Article  PubMed  CAS  Google Scholar 

  • Attygalle AB, Morgan ED (1985) Ant trail pheromones. Adv In Insect Phys 18:1–30

    Article  CAS  Google Scholar 

  • Barkman TJ (2001) Character coding of secondary chemical variation for use in phylogenetic analyses. Biochem Syst Ecol 29:1–20

    Article  PubMed  CAS  Google Scholar 

  • Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview, Boulder, pp 3–33

    Google Scholar 

  • Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906

    Article  PubMed  CAS  Google Scholar 

  • Borg-Karlson AK (1990) Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae). Phytochemistry 29:1359–1387

    Article  CAS  Google Scholar 

  • Bradshaw JW, Baker R, Howse PE (1975) Multicomponent alarm pheromones of the weaver ant. Nature 258:230–231

    Article  PubMed  CAS  Google Scholar 

  • Brandstaetter AS, Endler A, Kleineidam CJ (2008) Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95:601–608

    Article  PubMed  CAS  Google Scholar 

  • Brouat C, McKey D, Bessière JM, Pascal L, Hossaert-McKey M (2000) Leaf volatile compounds and the distribution of ant patrolling in an ant–plant protection mutualism: preliminary results on Leonardoxa (Fabaceae: Caesalpinioideae) and Petalomyrmex (Formicidae: Formicinae). Acta Oecon 21:349–357

    Article  Google Scholar 

  • Bruna EM, Lapola DM, Vasconcelos HL (2004) Interspecific variation in the defensive responses of obligate plant–ants: experimental tests and consequences for herbivory. Oecologia 138:558–565

    Article  PubMed  Google Scholar 

  • Bruna EM, Darrigo MR, Pacheco AMF, Vasconcelos HL (2008) Interspecific variation in the defensive responses of ant mutualists to plant volatiles. Biol J Linn Soc 94:241–249

    Article  Google Scholar 

  • Buczkowski G, Kumar R, Suib SL, Silverman J (2005) Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. J Chem Ecol 31:829–843

    Article  PubMed  CAS  Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257

    Article  Google Scholar 

  • Choe DH, Millar JG, Rust MK (2009) Chemical signals associated with life inhibit necrophoresis in Argentine ants. Proc Natl Acad Sci USA 106:8251–8255

    Article  PubMed  CAS  Google Scholar 

  • Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J (2004) Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process? J Chem Ecol 30:1305–1317

    Article  PubMed  CAS  Google Scholar 

  • Christianini AV, Machado G (2004) Induced biotic responses to herbivory and associated cues in the Amazonian ant-plant Maieta poeppigii. Entomol Exp Appl 112:81–88

    Article  Google Scholar 

  • Christy JH (1995) Mimicry, mate choise, and the sensory trap hypothesis. Am Nat 146:171–181

    Article  Google Scholar 

  • Cosio E (2009) Chemical recognition in an ant–plant mutualistic interaction. In: Joint meeting of the society for tropical ecology and the association for tropical biology and conservation. Marburg, Germany, p 580

    Google Scholar 

  • Cuvillier-Hot V, Renault V, Peeters C (2005) Rapid modification in the olfactory signal of ants following a change in reproductive status. Naturwissenschaften 92:73–77

    Article  PubMed  CAS  Google Scholar 

  • Dattilo WFC, Izzo TJ, Inouye BD, Vasconcelos HL, Bruna EM (2009) Recognition of host plant volatiles by Pheidole minutula Mayr (Myrmicinae), an Amazonian ant–plant specialist. Biotropica 41:642–646

    Article  Google Scholar 

  • Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138–1152

    Article  Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant–plant relationships. J Hymenopt Res 2:13–83

    Google Scholar 

  • Davidson DW, Longino JT, Snelling RR (1988) Pruning of host plant neighbors by ants – an experimental approach. Ecology 69:801–808

    Article  Google Scholar 

  • Davidson DW, Seidel JL, Epstein WW (1990) Neotropical ant garden II. Bioassays of seed compounds. J Chem Ecol 16:2993–3013

    Article  CAS  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  CAS  Google Scholar 

  • Dejean A, Delabie JHC, Cerdan P, Gibernau M, Corbara B (2006) Are myrmecophytes always better protected against herbivores than other plants? Biol J Linn Soc 89:91–98

    Article  Google Scholar 

  • Dejean A, Djieto-Lordon C, Orivel J (2008a) The plant ant Tetraponera aethiops (Pseudomyrmecinae) protects its host myrmecophyte Barteria fistulosa (Passifloraceae) through aggressiveness and predation. Biol J Linn Soc 93:63–69

    Article  Google Scholar 

  • Dejean A, Grangier J, Leroy C, Orivel J (2008b) Host plant protection by arboreal ants: looking for a pattern in locally induced responses. Evol Ecol Res 10:1217–1223

    Google Scholar 

  • Dejean A, Grangier J, Leroy C, Orivel J, Gilbernau M (2008c) Nest site selection and induced response in a dominant arboreal ant species. Naturwissenschaften 95:885–889

    Article  PubMed  CAS  Google Scholar 

  • Dejean A, Grangier J, Leroy C, Orivel J (2009) Predation and aggressiveness in host plant protection: a generalization using ants from the genus Azteca. Naturwissenschaften 96:57–63

    Article  PubMed  CAS  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    Article  PubMed  CAS  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J (1990a) Do plants cry for help? Evidence related to a tritrophic system of predatory mites, spider mites and their host plants. Symp Biol Hung 39:127–134

    Google Scholar 

  • Dicke M, Vanbeek TA, Posthumus MA, Bendom N, Vanbokhoven H, Degroot AE (1990b) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions: involvement of host plant in its production. J Chem Ecol 16:381–396

    Article  CAS  Google Scholar 

  • Djieto-Lordon C, Dejean A (1999) Tropical arboreal ant mosaics: innate attraction and imprinting determine nest site selection in dominant ants. Behav Ecol Sociobiol 45:219–225

    Article  Google Scholar 

  • Djieto-Lordon C, Dejean A, Gibernau M, Hossaert-McKey M, McKey D (2004) Symbiotic mutualism with a community of opportunistic ants: protection, competition, and ant occupancy of the myrmecophyte Barteria nigritana (Passifloraceae). Acta Oecon 26:109–116

    Article  Google Scholar 

  • Downhover JF (1975) The distribution of ants on Cecropia leaves. Biotropica 7:59–62

    Article  Google Scholar 

  • Du YJ, Poppy GM, Powell W (1996) Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J Chem Ecol 22:1591–1605

    Article  CAS  Google Scholar 

  • Edwards DP, Yu DW (2007) The roles of sensory traps in the origin, maintenance, and breakdown of mutualism. Behav Ecol Sociobiol 61:1321–1327

    Article  Google Scholar 

  • Edwards DP, Hassall M, Sutherland WJ, Yu DW (2006) Assembling a mutualism: ant symbionts locate their host plants by detecting volatile chemicals. Insectes Soc 53:172–176

    Article  Google Scholar 

  • Edwards DP, Arauco R, Hassall M, Sutherland WJ, Chamberlain K, Wadhams LJ, Yu DW (2007) Protection in an ant – plant mutualism: an adaptation or a sensory trap? Anim Behav 74:377–385

    Article  Google Scholar 

  • Edwards DP, Frederickson ME, Shepard GH, Yu DW (2009) A plant needs ants like a dog needs fleas: Myrmelachista schumanni ants gall many tree species to create housing. Am Nat 174:734–740

    Article  PubMed  Google Scholar 

  • Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950

    Article  PubMed  CAS  Google Scholar 

  • Endler A, Liebig J, Hölldobler B (2006) Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav Ecol Sociobiol 59:490–499

    Article  Google Scholar 

  • Federle W, Maschwitz U, Fiala B (1998) The two-partner ant-plant system of Camponotus (Colobopsis) sp 1 and Macaranga puncticulata (Euphorbiaceae): natural history of the exceptional ant partner. Insectes Soc 45:1–16

    Article  Google Scholar 

  • Federle W, Maschwitz U, Hölldobler B (2002) Pruning of host plant neighbours as defence against enemy ant invasions: Crematogaster ant partners of Macaranga protected by “wax barriers” prune less than their congeners. Oecologia 132:264–270

    Article  Google Scholar 

  • Fiala B, Maschwitz U (1990) Studies on the south east Asian ant–plant association Crematogaster borneensis/Macaranga – adaptations of the ant partner. Insectes Soc 37:212–231

    Article  Google Scholar 

  • Fiala B, Maschwitz U (1991) Extrafloral nectaries in the genus Macaranga (Euphorbiaceae) in Malaysia: comparative studies of their possible significance as predispositions for myrmecophytism. Biol J Linn Soc 44:287–305

    Article  Google Scholar 

  • Fiala B, Maschwitz U, Pong TY, Helbig AJ (1989) Studies of a South East Asian ant–plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79:463–470

    Article  Google Scholar 

  • Fiala B, Linsenmair KE, Maschwitz U (1994) Diversität von Interaktionen zwischen Ameisen und Pflanzen im südostasiatischen Regenwald. Andrias 13:169–178

    Google Scholar 

  • Fischer RC, Richter A, Wanek W, Mayer V (2002) Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia 133:186–192

    Article  Google Scholar 

  • Fischer RC, Wanek W, Richter A, Mayer V (2003) Do ants feed plants? A 15 N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. J Ecol 91:126–134

    Article  Google Scholar 

  • Fonseca CR (1993) Nesting space limits colony size of the plant–ant Pseudomyrmex concolor. Oikos 67:473–482

    Article  Google Scholar 

  • Fonseca CR (1999) Amazonian ant–plant interactions and the nesting space limitation hypothesis. J Trop Ecol 15:807–825

    Article  Google Scholar 

  • Fonseca CR, Benson WW (2003) Ontogenetic succession in Amazonian ant trees. Oikos 102:407–412

    Article  Google Scholar 

  • Frederickson ME (2006) The reproductive phenology of an Amazonian ant species reflects the seasonal availability of its nest sites. Oecologia 149:418–427

    Article  PubMed  Google Scholar 

  • Frederickson ME, Gordon DM (2009) The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90:1595–1607

    Article  PubMed  Google Scholar 

  • Frederickson ME, Greene MJ, Gordon DM (2005) “Devil’s gardens” bedevilled by ants. Nature 437:495–496

    Article  PubMed  CAS  Google Scholar 

  • Gaume L, McKey D (1998) Protection against herbivores of the myrmecophyte Leonardoxa africana (Baill.) Aubrèv. T3 by its principal ant inhabitant Aphomomyrmex afer Emery. C R Acad Sci Ser III Sci Vie 321:593–601

    Article  Google Scholar 

  • Gaume L, McKey D (1999) An ant–plant mutualism and its host-specific parasite: activity rhythms, young leaf patrolling, and effects on herbivores of two specialist plant–ants inhabiting the same myrmecophyte. Oikos 84:130–144

    Article  Google Scholar 

  • Gaume L, McKey D, Anstett MC (1997) Benefits conferred by "timid" ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax. Oecologia 112:209–216

    Article  Google Scholar 

  • Gianoli E, Sendoya S, Vargas F, Mejia P, Jaffe R, Rodriguez M, Gutierrez A (2008) Patterns of Azteca ants’ defence of Cecropia trees in a tropical rainforest: support for optimal defence theory. Ecol Res 23:905–908

    Article  Google Scholar 

  • Gonzalez-Teuber M, Heil M (2009) The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J Chem Ecol 35:459–468

    Article  PubMed  CAS  Google Scholar 

  • Grangier J, Dejean A, Male PJ, Orivel J (2008) Indirect defense in a highly specific ant–plant mutualism. Naturwissenschaften 95:909–916

    Article  PubMed  CAS  Google Scholar 

  • Greenberg L, Troger AG, Francke W, McElfresh JS, Topoff H, Aliabadi A, Millar JG (2007) Queen sex pheromone of the slave-making ant, Polyergus breviceps. J Chem Ecol 33:935–945

    Article  PubMed  CAS  Google Scholar 

  • Greene MJ, Gordon DM (2007) Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J Exp Biol 210:897–905

    Article  PubMed  CAS  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Guerrieri FJ, Nehring V, Jorgensen CG, Nielsen J, Galizia CG, d’Ettorre P (2009) Ants recognize foes and not friends. Proc R Soc B 276:2461–2468

    Article  PubMed  CAS  Google Scholar 

  • Gullan PJ (1997) Relationships with ants. In: Ben-Dov Y, Hodgson CJ (eds) Soft scale insects: their biology, natural enemies and control. Elsevier Science, Amsterdam, pp 351–373

    Chapter  Google Scholar 

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic, San Diego

    Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals – ‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34

    PubMed  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  PubMed  CAS  Google Scholar 

  • Heil M, McKey D (2003) Protective ant–plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453

    Article  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Fiala B, Kaiser W, Linsenmair KE (1998) Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Funct Ecol 12:117–122

    Article  Google Scholar 

  • Heil M, Fiala B, Maschwitz U, Linsenmair KE (2001) On benefits of indirect defence: short- and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126:395–403

    Article  Google Scholar 

  • Heil M, Baumann B, Kruger R, Linsenmair KE (2004a) Main nutrient compounds in food bodies of Mexican Acacia ant–plants. Chemoecology 14:45–52

    Article  CAS  Google Scholar 

  • Heil M, Feil D, Hilpert A, Linsenmair KE (2004b) Spatiotemporal patterns in indirect defence of a South-East Asian ant-plant support the optimal defence hypothesis. J Trop Ecol 20:573–580

    Article  Google Scholar 

  • Heil M, Greiner S, Meimberg H, Kruger R, Noyer JL, Heubl G, Linsenmair KE, Boland W (2004c) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208

    Article  PubMed  CAS  Google Scholar 

  • Heinze J, Foitzik S, Hippert A, Hölldobler B (1996) Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 102:510–522

    Article  Google Scholar 

  • Hölldobler B (1995) The chemistry of social regulation: multicomponent signals in ant societies. Proc Natl Acad Sci USA 92:19–22

    Article  PubMed  Google Scholar 

  • Hölldobler B, Carlin NF (1987) Anonymity and specificity in the chemical communication signals of social insects. J Comp Physiol A Sens Neural Behav Physiol 161:567–581

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap, Cambridge

    Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  PubMed  CAS  Google Scholar 

  • Inui Y, Itioka T (2007) Species-specific leaf volatile compounds of obligate Macaranga myrmecophytes and host-specific aggressiveness of symbiotic Crematogaster ants. J Chem Ecol 33:2054–2063

    Article  PubMed  CAS  Google Scholar 

  • Inui Y, Itioka T, Murase K, Yamaoka R, Itino T (2001) Chemical recognition of partner plant species by foundress ant queens in MacarangaCrematogaster myrmecophytism. J Chem Ecol 27:2029–2040

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1967) Interaction of the bull’s-horn acacia (Acacia cornigera L.) with an ant inhabitant (Pseudomyrmex ferruginea F. Smith) in Eastern Mexico. Kans Univ Sci Bull 47:315–558

    Google Scholar 

  • Janzen DH (1969) Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50:147–153

    Article  Google Scholar 

  • Janzen DH (1972) Protection of Barteria (Passifloraceae) by Pachysima ants (Pseudomyrmecinae) in a Nigerian rain-forest. Ecology 53:885–892

    Article  Google Scholar 

  • Janzen DH (1973) Evolution of polygynous obligate Acacia-ants in Western Mexico. J Anim Ecol 42:727–750

    Article  Google Scholar 

  • Jolivet P (1996) Ants and plants, an example of coevolution. Backhuys, Leiden

    Google Scholar 

  • Jürgens A (2004) Flower scent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors? Biochem Syst Ecol 32:841–859

    Article  CAS  Google Scholar 

  • Jürgens A, Feldhaar H, Feldmeyer B, Fiala B (2006) Chemical composition of leaf volatiles in Macaranga species (Euphorbiaceae) and their potential role as olfactory cues in host-localization of foundress queens of specific ant partners. Biochem Syst Ecol 34:97–113

    Article  CAS  Google Scholar 

  • Kalberer NM, Turlings TCJ, Rahier M (2001) Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J Chem Ecol 27:647–661

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeldt SE (1978) The Interaction of Codonanthe crassifolia (Gesneriaceae) and Crematogaster longispina (Formicidae). Ecology 59:449–456

    Article  Google Scholar 

  • Kohl E, Hölldobler B, Bestmann HJ (2000) A trail pheromone component of the ant Mayriella overbecki Viehmeyer (Formicidae: Myrmicinae). Naturwissenschaften 87:320–322

    Article  PubMed  CAS  Google Scholar 

  • Lahav S, Soroker V, Hefetz A (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249

    Article  CAS  Google Scholar 

  • Lapola DM, Bruna EM, Vasconcelos HL (2003) Contrasting responses to induction cues by ants inhabiting Maieta guianensis (Melastomataceae). Biotropica 35:295–300

    Google Scholar 

  • Lemaire M, Nagnan P, Clement JL, Lange C, Peru L, Basselier JJ (1990) Geranyllinalool (diterpene alcohol) an insecticidal component of pine wood and termites (Isoptera: Rhinotermitidae) in four European ecosystems. J Chem Ecol 16:2067–2079

    Article  CAS  Google Scholar 

  • Lenoir A, Fresneau D, Errard C, Hefetz A (1999) Individual and colonial identity in ants: the emergence of the social representation concept. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhauser, Bâle, pp 219–237

    Chapter  Google Scholar 

  • Letourneau DK (1983) Passive aggression: an alternative hypothesis for the Piper–Pheidole association. Oecologia 60:122–126

    Article  Google Scholar 

  • Letourneau DK (1998) Ants, stem-borers, and fungal pathogens: experimental tests of a fitness advantage in Piper ant–plants. Ecology 79:593–603

    Google Scholar 

  • Levin RA, McDade LA, Raguso RA (2003) The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae. Syst Biol 52:334–351

    Article  PubMed  Google Scholar 

  • Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416

    Article  PubMed  CAS  Google Scholar 

  • Madden D, Young TP (1992) Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia 91:235–238

    Article  Google Scholar 

  • Mayer V, Schaber D, Hadacek F (2008) Volatiles of myrmecophytic Piper plants signal stem tissue damage to inhabiting Pheidole ant-partners. J Ecol 96:962–970

    Article  CAS  Google Scholar 

  • McKey D (1974a) Ant–plants: selective eating of an unoccupied barteria by a Colobus monkey. Biotropica 6:269–270

    Article  Google Scholar 

  • McKey D (1974b) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Article  Google Scholar 

  • McKey D (1984) Interaction of the ant–plant Leonardoxa africana (Caesalpiniaceae) with its obligate inhabitants in rainforest in Cameroon. Biotropica 16:81–99

    Article  Google Scholar 

  • McKey D (2000) Leonardoxa africana (Leguminosae: Caesalpinioideae): a complex of mostly allopatric subspecies. Adansonia 22:71–109

    Google Scholar 

  • McKey D, Davidson DW (1993) Ant-plant symbioses in Africa and the neotropics: history, biogeography and diversity. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 568–606

    Google Scholar 

  • McKitrick MC (1993) Phylogenetic constraint in evolutionary theory: has it any explanatary power? Annu Rev Ecol Syst 24:307–330

    Article  Google Scholar 

  • McNeill J, Stuessy TF, Turland NJ, Horandl E (2005) XVII International Botanical Congress: preliminary mail vote and report of Congress action on nomenclature proposals. Taxon 54:1057–1064

    Article  Google Scholar 

  • Metlen KL, Aschehoug ET, Callaway RM (2009) Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant Cell Environ 32:641–653

    Article  PubMed  CAS  Google Scholar 

  • Moog J, Drude T, Maschwitz U (1998) Protective function of the plant–ant Cladomyrma maschwitzi to its host, Crypteronia griffithii, and the dissolution of the mutualism (Hymenoptera: Formicidae). Sociobiology 31:105–129

    Google Scholar 

  • Moraes SC, Vasconcelos HL (2009) Long-term persistence of a neotropical ant–plant population in the absence of obligate plant–ants. Ecology 90:2375–2383

    Article  PubMed  Google Scholar 

  • Morawetz W, Henzl M, Wallnofer B (1992) Tree killing by herbicide producing ants for the establishment of pure Tococa occidentalis populations in the Peruvian Amazon. Biodivers Conserv 1:19–33

    Article  Google Scholar 

  • Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34:1–17

    Article  CAS  Google Scholar 

  • Morgan ED, Jackson BD, Ollett DG, Sales GW (1990) Trail pheromone of the ant Tetramorium impurum and model compounds: structure–activity comparisons. J Chem Ecol 16:3493–3510

    Article  CAS  Google Scholar 

  • Ness JH, Morris WF, Bronstein JL (2009) For ant-protected plants, the best defense is a hungry offense. Ecology 90:2823–2831

    Article  PubMed  CAS  Google Scholar 

  • Orivel J, Dejean A (1999) Selection of epiphyte seeds by ant-garden ants. Ecoscience 6:51–55

    Google Scholar 

  • Passera L, Aron S (2005) Les fourmis: comportement, organisation sociale et évolution. Les Presses scientifiques du CNRC, Ottawa

    Google Scholar 

  • Passera L, Lachaud JP, Gomel L (1994) Individual food source fidelity in the neotropical ponerine ant Ectatomma ruidum Roger (Hymenoptera Formicidae). Ethol Ecol Evol 6:13–21

    Article  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Pennacchio F, Poppy GM, Tremblay E (1998) Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol Control 11:104–112

    Article  Google Scholar 

  • Raine NE, Willmer P, Stone GN (2002) Spatial structuring and floral avoidance behavior prevent ant-pollinator conflict in a Mexican ant-Acacia. Ecology 83:3086–3096

    Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Edwards D (2004) Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Elsevier, Amsterdam, pp 17–41

    Chapter  Google Scholar 

  • Regnier FE, Wilson EO (1968) The alarm-defence system of the ant Acanthomyops claviger. J Insect Physiol 14:955–970

    Article  CAS  Google Scholar 

  • Renner SS, Ricklefs RE (1998) Herbicidal activity of domatia-inhabiting ants in patches of Tococa guianensis and Clidemia heterophylla. Biotropica 30:324–327

    Article  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores. their interaction with secondary plant metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant–plant interactions. The University of Chicago Press, Chicago

    Google Scholar 

  • Risch SJ, Rickson FR (1981) Mutualismin which ants must be present before plants produce fodd bodies. Nature 291:149–150

    Article  Google Scholar 

  • Romero GQ, Izzo TJ (2004) Leaf damage induces ant recruitment in the Amazonian ant–plant Hirtella myrmecophila. J Trop Ecol 20:675–682

    Article  Google Scholar 

  • Rosumek FB, Silveira FAO, Neves FD, Barbosa NPD, Diniz L, Oki Y, Pezzini F, Fernandes GW, Cornelissen T (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549

    Article  PubMed  Google Scholar 

  • Sasso R, Iodice L, Woodcock CM, Pickett JA, Guerrieri E (2009) Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology 19:195–201

    Article  CAS  Google Scholar 

  • Schatz B, Djieto-Lordon C, Dormont L, Bessiere JM, McKey D, Blatrix R (2009) A simple nonspecific chemical signal mediates defence behaviour in a specialised ant–plant mutualism. Curr Biol 19:R361–R362

    Article  PubMed  CAS  Google Scholar 

  • Seidel JL, Epstein WW, Davidson DW (1990) Neotropical ant gardens. I. Chemical constituents. J Chem Ecol 16:1791–1816

    Article  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Sorvari J, Theodora P, Turillazzi S, Hakkarainen H, Sundström L (2008) Food resources, chemical signaling, and nest mate recognition in the ant Formica aquilonia. Behav Ecol 19:441–447

    Article  Google Scholar 

  • Stanton ML, Palmer TM, Young TP, Evans A, Turner ML (1999) Sterilization and canopy modification of a swollen thorn acacia tree by a plant–ant. Nature 401:578–581

    Article  CAS  Google Scholar 

  • Takabayashi J, Takahashi S, Dicke M, Posthumus MA (1995) Developmental stage of herbivore Pseudaletia separata affects production of herbivore induced synomone by corn plants. J Chem Ecol 21:273–287

    Article  CAS  Google Scholar 

  • Todd JL, Baker TC (1999) Function of peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 67–96

    Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 21–75

    Chapter  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Rose USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174

    Article  PubMed  CAS  Google Scholar 

  • Vantaux A, Dejean A, Dor A, Orivel J (2007) Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insectes Soc 54:95–99

    Article  Google Scholar 

  • Vasconcelos HL (1993) Ant colonization of Maieta guianensis seedlings, an Amazon ant–plant. Oecologia 95:439–443

    Article  Google Scholar 

  • Wäckers FL, Zuber D, Wunderlin R, Keller F (2001) The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Ann Bot 87:365–370

    Article  CAS  Google Scholar 

  • Webber BL, McKey D (2009) Cyanogenic myrmecophytes, redundant defence mechanisms and complementary defence syndromes: revisiting the neotropical ant-acacias. New Phytol 182:792–794

    Article  PubMed  Google Scholar 

  • Wickler W (1965) Mimicry and evolution of animal communication. Nature 208:519–521

    Article  Google Scholar 

  • Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29

    Article  Google Scholar 

  • Youngsteadt E, Nojima S, Haberlein C, Schulz S, Schal C (2008) Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests. Proc Natl Acad Sci USA 105:4571–4575

    Article  PubMed  CAS  Google Scholar 

  • Youngsteadt E, Alvarez Baca J, Osborne J, Schal C (2009) Species-specific seed dispersal in an obligate ant–plant mutualism. Plos One 4:e4335

    Article  PubMed  CAS  Google Scholar 

  • Yumoto T, Maruhashi T (1999) Pruning behavior and intercolony competition of Tetraponera (Pachysima) aethiops (Pseudomyrmecinae, Hymenoptera) in Barteria fistulosa in a tropical forest, Democratic Republic of Congo. Ecol Res 14:393–404

    Article  Google Scholar 

  • Zhu JW, Park KC (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733–1746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Doyle McKey for discussions and proof-reading the manuscript, and Finn Kjellberg for stimulating discussions. Studies of ant–plant interactions were funded by two grants from the French Agence Nationale de la Recherche to R.B. (“Young scientists” programme, research agreement no. ANR-06-JCJC-0127, and “Biodiversity” programme, IFORA project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumsaïs Blatrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blatrix, R., Mayer, V. (2010). Communication in Ant–Plant Symbioses. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_9

Download citation

Publish with us

Policies and ethics