Skip to main content

Within-Plant Signalling by Volatiles Triggers Systemic Defences

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plants use both internal and external signals to mount their systemic responses to local enemy attack. Resistance to herbivores being induced by airborne cures (VOCs, volatile organic compounds) has originally been discovered in the context of ‘communication’ among independent individual plants. Because the phenomenon of plants ‘helping’ their non-related neighbours to survive apparently contradicts evolutionary theory, this phenomenon remained controversial for many years. Only recently, several groups reported that VOCs released from damaged organs can also trigger a systemic resistance in as yet intact organs of a plant. This mechanism may represent the evolutionary origin of resistance induction by VOCs, as it opens the potential for fitness benefits that are achieved by the emitter itself. The observation comes, however, with its own problems: Why do plants use VOCs, whose movements are out of their control, instead of relying exclusively on internal vascular signals? Until now, the phenomenon of within-plant signalling by VOCs has been described for only four plant species: sagebrush, lima bean, poplar and blueberry. Generalisations are, thus, difficult to make at the present stage. Likely benefits of airborne as compared to vascular signalling comprise the speed of information transfer, the independence from the vascular system (VOCs can reach organs that lack direct vascular connections with the attacked one or that insert on spatially close, yet anatomically independent branches) and the option of priming: VOCs can prime intact plant tissues, thereby preparing them for a likely attack without the need for immediately investing in full resistance expression. Future research is required to understand how common and how important within-plant signalling by volatile compounds is within the plant kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  PubMed  CAS  Google Scholar 

  • Arimura G-I, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: “Talking trees” in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hasch R, Polle A, Bohlmann J, Schnitzler JP (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    Article  CAS  Google Scholar 

  • Birkett MA, Blassioli-Moraes MC, Borges M, Bruce TJA, Gordon-Weels R, Goulart-Santana AE, Smart LE, Woodcock CM, Pickett JA (2009) cis-Jasmone as an activator of plant defence: understanding underlying meachnisms and towards field deployment. In: 25th Annual Meeting of the International Society of Chemical Ecology, Neuchatel, p 107

    Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Bolter CJ, Dicke M, vanLoon JJA, Visser JH, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J Chem Ecol 23:1003–1023

    Article  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus x euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Bruin J, Dicke M, Sabelis MW (1992) Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48:525–529

    Article  CAS  Google Scholar 

  • Bruinsma M, Ildema H, van Loon JJA, Dicke M (2008) Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Entomol Exp Appl 128:109–116

    Article  CAS  Google Scholar 

  • Chini A, Boter M, Solano R (2009) Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J 276:4682–4692

    Article  PubMed  CAS  Google Scholar 

  • Cipollini DF, Purrington CB, Bergelson J (2003) Costs of induced responses in plants. Basic Appl Ecol 4:79–89

    Article  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Gordon MP, Smit BA (1991) Assimilate movement dictates remote sites of wound-induced gene expression in poplar leaves. Proc Natl Acad Sci USA 88:2393–2396

    Article  PubMed  CAS  Google Scholar 

  • de Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  CAS  Google Scholar 

  • Dicke M (1994) Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. J Plant Physiol 143:465–472

    Article  CAS  Google Scholar 

  • Dicke M, Bruin J (2001a) Chemical information transfer between damaged and undamaged plants. Biochem Syst Ecol 29:979–980

    Article  CAS  Google Scholar 

  • Dicke M, Bruin J (2001b) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29:981–994

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165

    Article  Google Scholar 

  • Dicke M, van Poecke RMP, de Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27–42

    Article  CAS  Google Scholar 

  • Dilantha Fernando WG, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125:504–511

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Fokar M, Zhang HA, Allen RD, Paré PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Fowler SV, Lawton JH (1985) Rapidly induced defenses and talking trees: the devil’s advocate position. Am Nat 126:181–195

    Article  Google Scholar 

  • Frati F, Chamberlain K, Birkett M, Dufour S, Mayon P, Woodcock C, Wadhams L, Pickett J, Salerno G, Conti E, Bin F (2009) Vicia fabaLygus rugulipennis interactions: induced plant volatiles and sex pheromone enhancement. J Chem Ecol 35:201–208

    Article  PubMed  CAS  Google Scholar 

  • Frost C, Appel H, Carlson J, De Moraes C, Mescher M, Schultz J (2007) Within-plant signalling by volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10:490–498

    Article  PubMed  Google Scholar 

  • Frost C, Mescher MC, Carlson J, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Robledo C, Horvitz CC (2009) Host plant scents attract rolled-leaf beetles to Neotropical gingers in a Central American tropical rain forest. Entomol Exp Appl 131:115–120

    Article  Google Scholar 

  • Gilpatrick JD, Weintraub M (1952) An unusual type of protection with the carnation mosaic virus. Science 115:701–702

    Article  PubMed  CAS  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121:233–242

    Article  Google Scholar 

  • Gómez S, Stuefer JF (2006) Members only: induced systemic resistance to herbivory in a clonal plant network. Oecologia 147:461–468

    Article  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Guedes MEM, Richmond S, Kuc J (1980) Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and the onset of flowering and fruiting. Physiol Plant Pathol 17:229–233

    Article  Google Scholar 

  • Heil M (2004) Direct defense or ecological costs? Responses of herbivorous beetles to volatiles released by wild Lima bean (Phaseolus lunatus). J Chem Ecol 30:1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  PubMed  CAS  Google Scholar 

  • Heil M (2009a) Airborne induction and priming of defences. In: Baluška F (ed) Plant – environment interactions. Springer, Berlin, pp 137–152

    Chapter  Google Scholar 

  • Heil M (2009b) Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14:356–363

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Karban R (2010) Explaining the evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defences. Ecol Lett 9:813–817

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007a) Herbivore-induced volatiles as rapid signals in systemic plant responses. Plant Signal Behav 2:191–193

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007b) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Lion U, Boland W (2008) Defence-inducing volatiles: in search for the active motif. J Chem Ecol 34:601–604

    Article  PubMed  CAS  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    Article  PubMed  CAS  Google Scholar 

  • Kalberer NM, Turlings TCJ, Rahier M (2001) Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J Chem Ecol 27:647–661

    Article  PubMed  CAS  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin I, Baxter K, Laue G, Felton G (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Karban R, Maron J (2002) The fitness consequences of interspecific eavesdropping between plants. Ecology 83:1209–1213

    Article  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332

    Article  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  • Kiefer IW, Slusarenko AJ (2003) The pattern of systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation. Plant Physiol 132:840–847

    Article  PubMed  CAS  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Lin H, Kogan M, Fischer D (1990) Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae): comparisons of inducing factors. Environ Entomol 119:1852–1857

    Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316

    Article  PubMed  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  PubMed  CAS  Google Scholar 

  • Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232

    Article  CAS  Google Scholar 

  • Mooney AC, Robertson HM, Wanner KW (2009) Neonate silkworm (Bombyx mori) larvae are attracted to mulberry (Morus alba) leaves with conspecific feeding damage. J Chem Ecol 35:552–559

    Article  PubMed  CAS  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J (1996) Herbivore-induced resistance in Betula pendula: the role of plant vascular architecture. Oecologia 108:723–727

    Article  Google Scholar 

  • Myers JH, Williams KS (1984) Does tent caterpillar attack reduce the food quality of red alder foliage? Oecologia 62:74–79

    Article  Google Scholar 

  • Nakamura S, Hatanaka A (2002) Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both gram-negative and gram-positive bacteria. J Agric Food Chem 50:7639–7644

    Article  PubMed  CAS  Google Scholar 

  • Orians C (2005) Herbivores, vascular pathways, and systemic induction: facts and artifacts. J Chem Ecol 31:2231–2242

    Article  PubMed  CAS  Google Scholar 

  • Orians CM, Pomerleau J, Rico R (2000) Vascular architecture generates fine scale variation in the systemic induction of proteinase inhibitors in tomato. J Chem Ecol 26:471–485

    Article  CAS  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  PubMed  CAS  Google Scholar 

  • Preston CA, Laue G, Baldwin IT (2001) Methyl jasmonate is blowing in the wind, but can it act as a plant–plant airborne signal? Biochem Syst Ecol 29:1007–1023

    Article  CAS  Google Scholar 

  • Preston CA, Lewandowski C, Enyedi AJ, Baldwin IT (1999) Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209:87–95

    Article  PubMed  CAS  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin PA (ed) Plant resistance to insects. American Chemical Society, Washington, pp 55–68

    Chapter  Google Scholar 

  • Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 35:163–175

    Article  PubMed  CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infection in plants. Virology 14:340–358

    Article  PubMed  CAS  Google Scholar 

  • Ruther J, Kleier S (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-Hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Schittko U, Baldwin IT (2003) Constraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuata. J Chem Ecol 29:763–770

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    Article  PubMed  CAS  Google Scholar 

  • Stankovic B, Davies E (1998) The wound response in tomato involves rapid growth and electrical responses, systemically up-regulated transcription of proteinase inhibitor and calmodulin and down-regulated translation. Plant Cell Physiol 39:268–274

    Article  CAS  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  PubMed  CAS  Google Scholar 

  • Ton J, D‘Allesandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  PubMed  CAS  Google Scholar 

  • Tumlinson JH, Paré PW, Turlings TCJ (1999) Plant production of volatile semiochemicals in response to insect-derived elicitors. In: Chadwick DJ, Goode JA (eds) Insect–plant interactions and induced plant defence. Wiley, Chichester, pp 95–109

    Google Scholar 

  • Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146–152

    Article  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Wäckers FL (2004) Recruitment of predators and parasitoids by herbivore-injured plants. In: Cardés RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 21–75

    Chapter  Google Scholar 

  • Van Bel AJE, Gaupels F (2004) Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:495–504

    Article  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  CAS  Google Scholar 

  • van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid-plant mutualism: parasitoid attack of herbivore resistance increases plant reproducion. Entomol Exp Appl 97:219–227

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Reg 19:195–216

    CAS  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17

    Article  CAS  Google Scholar 

  • Yi H-S, Heil M, Ballhorn D, Ryu C-M (2009) Airborne induction and priming of plant resistance to a bacterial pathogen. Plant Physiol 151(4):2152–2161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Heil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heil, M. (2010). Within-Plant Signalling by Volatiles Triggers Systemic Defences. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_7

Download citation

Publish with us

Policies and ethics