Skip to main content

Global Atmospheric Change and Trophic Interactions: Are There Any General Responses?

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Abstract

Increasing atmospheric CO2 is hypothesized to alter plant physiology and metabolism, which may have important implications for species interactions. In this chapter, we review published studies on the effects of elevated atmospheric CO2 on plant-derived allelochemicals and the possible effects of CO2-mediated changes on higher trophic levels such as herbivores, parasitoids, and predators. We provide a critical assessment of conventional ecological theories used to predict phytochemical responses to CO2 and we make some suggestions as to how this field may be expanded and improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrell J, McDonald EP, Lindroth RL (2000) Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272

    CAS  Google Scholar 

  • Agrell J, Kopper B, McDonald EP, Lindroth RL (2005) CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Glob Chang Biol 11:588–599

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Google Scholar 

  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    PubMed  CAS  Google Scholar 

  • Awmack CS, Woodcock CM, Harrington R (1997) Climate change may increase vulnerability of aphids to natural enemies. Ecol Entomol 22:366–368

    Google Scholar 

  • Ayres MP (1993) Plant defense, herbivory and climate change. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer Associates, Sunderland, MA, pp 75–94

    Google Scholar 

  • Balanyá J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313:1773–1775

    PubMed  Google Scholar 

  • Baldwin JT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    PubMed  CAS  Google Scholar 

  • Bazzaz FA (1990) Response of natural ecosystems to the rising global CO2 level. Annu Rev Ecol Syst 21:167–196

    Google Scholar 

  • Bezemer TM, Jones TH, Newington JE (2000) Effects of carbon dioxide and nitrogen fertilzation on phenolic content in Poa annua L. Biochem Sys Ecol 28:839–846

    CAS  Google Scholar 

  • Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424

    PubMed  Google Scholar 

  • Birkett MA, Bruce TJA, Martin JL, Smart LE, Oakley J, Wadhams LJ (2004) Responses of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. J Chem Ecol 30:1319–1328

    PubMed  CAS  Google Scholar 

  • Bossi F, Cordoba E, Dupré P, Mendoza MS, San Román C, Léon P (2009) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during signaling. Plant J 59:359–374

    PubMed  CAS  Google Scholar 

  • Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Physiol, Plant Mol Biol 44:309–32

    CAS  Google Scholar 

  • Brower LP, Fink LS (1985) A natural toxic defense system – cardenolides in butterflies versus birds. Ann N Y Acad Sci 443:171–188

    PubMed  CAS  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    PubMed  CAS  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    PubMed  CAS  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleraceae attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2587

    PubMed  CAS  Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    CAS  Google Scholar 

  • Coley PD (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim Change 39:455–472

    Google Scholar 

  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Chang Biol 5:255–267

    Google Scholar 

  • Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: a test of phytochemical theory. Am Nat 161:507–522

    PubMed  Google Scholar 

  • Cotrufo MF, Ineson P, Rowland AP (1994) Decomposition of tree leaf litters grown under elevated CO2: effect of litter quality. Plant Soil 163:121–130

    Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4:43–54

    Google Scholar 

  • Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conserv Biol 18:700–712

    Google Scholar 

  • Coviella CE, Trumble JT (2000) Effect of elevated atmospheric carbon dioxide on the use of foliar application of Bacillus thuringiensis. Biocontrol 45:325–336

    CAS  Google Scholar 

  • Coviella CE, Morgan DJW, Trumble JT (2000) Interactions of elevated CO2 and nitrogen fertilization: effects on production of Bacillus thuringiensis toxins in transgenic plants. J Econ Entomol 93:781–787

    Google Scholar 

  • Cronin G, Hay ME (1996) Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105:361–368

    Google Scholar 

  • Dhillion SS, Roy J, Abrams M (1996) Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant Soil 187:333–342

    CAS  Google Scholar 

  • Dill LM, Fraser AHG, Roitberg BD (1990) The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia 83:473–478

    Google Scholar 

  • Docherty M, Hurst DK, Holopainen JK, Whittaker JB, Lea PJ, Watt AD (1996) Carbon dioxide-induced changes in beech foliage cause female beech weevil larvae to feed in a compensatory manner. Glob Chang Biol 2:335–331

    Google Scholar 

  • Drake BG, Gonzàlez-Meler MA (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1991) The effects of enriched CO2 atmospheres on the Buckeye Butterfly, Junonia coenia. Ecology 72:751–754

    Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1992) The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in plantago: a test of the carbon/nutrient balance hypothesis. Am Nat 140:707–723

    PubMed  CAS  Google Scholar 

  • Feeny P (1975) Biochemical coevolution between plants and their insect herbivores. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, TX, pp 3–19

    Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Recent advances in phytochemistry, vol 10. Plenum, New York, pp 1–40

    Google Scholar 

  • Fraser AM, Mechaber WL, Hildebrand JG (2003) Electroantennographic and behavioural responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J Chem Ecol 29:1813–1833

    PubMed  CAS  Google Scholar 

  • Futuyama DJ (1983) Evolutionary interactions among herbivorous insects and plants. In: Futuyama DJ, Slatkins M (eds) Coevolution. Sinauer, Sunderland, MA, pp 207–231

    Google Scholar 

  • Gayler S, Grams TEE, Heller W, Treutter D, Priesack E (2008) A dynamical model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann Bot 101:1089–1098

    PubMed  CAS  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    PubMed  CAS  Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–1328

    CAS  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264

    PubMed  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    PubMed  CAS  Google Scholar 

  • Goverde M, Erhardt A, Stocklin J (2004) Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorous availability in calcareous grassland. Oecologia 139:383–391

    PubMed  Google Scholar 

  • Gulmon SL, Mooney HA (1986) Costs of defense on plant productivity. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 681–698

    Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon–nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Google Scholar 

  • Hamilton JG, Dermody O, Mihai A, Zangerl AR, Rogers A, Berenbaum MR, Delucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 32:479–485

    Google Scholar 

  • Hättenschwiler S, Schafellner C (1999) Opposing effects of elevated CO2 and N deposition on Lymantria monacha larvae feeding on spruce trees. Oecologia 118:210–217

    Google Scholar 

  • Hemming JDC, Lindroth RL (1999) Effect of light and nutrient availability on aspen: growth, phytochemistry and insect performance. J Chem Ecol 25:1687–1714

    CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Himanen SJ, Nerg AM, Nissinen A, Pinto DM, Stewart CN Jr, Poppy GM, Holopainen JK (2009) Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol 181:174–186

    PubMed  CAS  Google Scholar 

  • Holton MK, Lindroth RL, Nordheim EV (2003) Foliar quality influences tree–herbivore–parasitoid interactions: effects of elevate CO2, O3, and plant genotype. Oecologia 137:233–244

    PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    PubMed  CAS  Google Scholar 

  • Hunt MG, Rasmussen S, Newton PCD, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte infection on perennial ryegrass: growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354

    CAS  Google Scholar 

  • Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agric For Entomol 3:153–159

    Google Scholar 

  • IPCC Special Report on Emissions Scenarios (SRES), Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios, working group III, intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson RH, Lincoln DE (1990) Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia 84:103–110

    Google Scholar 

  • Johnson RH, Lincoln DE (1991) Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO2 enrichment and soil mineral limitation. Oecologia 87:127–134

    Google Scholar 

  • Jones CG, Hartley SE (1999) A protein competition model of phenolic allocation. Oikos 86:27–44

    CAS  Google Scholar 

  • Karban R, Shiojiri K (2009) Self-recognition affects plant communication and defense. Ecol Lett 12:502–506

    PubMed  Google Scholar 

  • Karowe DN, Seimens DH, Mitchell-Olds T (1997) Species-specific response of glucosinolate content to elevated atmospheric CO2. J Chem Ecol 23:2569–2582

    CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    PubMed  CAS  Google Scholar 

  • Kingsolver JG (1996) Physiological sensitivity and evolutionary responses to climate change. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations and communities. Academic, San Diego, CA, pp 3–12

    Google Scholar 

  • Kinney KK, Lindroth RL, Jung SM, Nordheim EV (1997) Effects of CO2 and NO −3 availability on deciduous trees: phytochemistry and insect performance. Ecology 78:215–230

    Google Scholar 

  • Klironomos JN, Allen MF, Rillig MC, Pietrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature 433:621–624

    PubMed  CAS  Google Scholar 

  • Koch T, Krumm T, Jung V, Engelberth J, Boland W (1999) Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol 121:153–162

    PubMed  CAS  Google Scholar 

  • Kopper BJ, Lindroth RL (2003) Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103

    PubMed  Google Scholar 

  • Kopper BJ, Lindroth RL, Nordheim EV (2001) CO2 and O3 effects on paper birch (Betulaceae:Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environ Entomol 30:1119–1126

    CAS  Google Scholar 

  • Koricheva J (2002) The carbon–nutrient balance hypothesis is dead; long live the carbon–nutrient balance hypothesis? Oikos 98:537–539

    CAS  Google Scholar 

  • Kreuzwieser J, Cojocariu C, Jüssen V, Rennenberg H (2002) Elevated atmospheric CO2 causes seasonal changes in carbonyl emissions from Quercus ilex. New Phytol 154:327–333

    CAS  Google Scholar 

  • Lake JA, Woodward FI, Quick WP (2002) Long-distance CO2 signalling in plants. J Exp Bot 53:183–193

    PubMed  CAS  Google Scholar 

  • Léon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    PubMed  Google Scholar 

  • Lerdau M, Coley PD (2002) Benefits of the carbon–nutrient balance hypothesis. Oikos 98:534–536

    Google Scholar 

  • Lindroth RL, Dearing MD (2005) Herbivory in a world of elevated CO2. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals and ecosystems. Springer, Berlin, pp 468–486

    Google Scholar 

  • Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777

    CAS  Google Scholar 

  • Lindroth RL, Roth S, Kruger EL, Volin JC, Koss PA (1997) CO2-mediated changes in aspen chemistry: effects on gypsy moth performance and susceptibility to virus. Glob Chang Biol 3:279–289

    Google Scholar 

  • Loomis WE (1932) Growth-differentiation balance vs carbohydrate–nitrogen ratio. Proc Am Soc Hortic Sci 29:240–245

    CAS  Google Scholar 

  • Loomis WE (1953) Growth and differentiation – an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. State College Press, Ames, IA, pp 1–17

    Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    PubMed  CAS  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler JP, Cicciolo P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Chang Biol 7:709–717

    Google Scholar 

  • Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40:999–1006

    CAS  Google Scholar 

  • Mansfield JL, Curtis PS, Zak DR, Pregitzer KS (1999) Genotypic variation for condensed tannin production in trembling aspen (Populus tremuloides, Salicaceae) under elevated CO2 and in high- and low-fertility soil. Am J Bot 86:1154–1159

    PubMed  CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatc resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    PubMed  CAS  Google Scholar 

  • Mattson WJ, Julkunen-Tiitto R, Herms DA (2005) CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models? Oikos 111:337–347

    CAS  Google Scholar 

  • McDonald EP, Agrell J, Lindroth RL (1999) CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119:389–399

    Google Scholar 

  • McKey DB (1979) The distribution of secondary compounds within plants. In: Rosenthal JA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 55–133

    Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264

    Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    PubMed  CAS  Google Scholar 

  • Mondor EB, Tremblay NM, Awmack CS, Lindroth RL (2004) Divergent pheromone-mediated insect behaviour under global atmospheric change. Glob Chang Biol 10:1820–1824

    Google Scholar 

  • Narberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels – evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125

    CAS  Google Scholar 

  • Newman JA, Abner ML, Dado RG, Gibson DJ, Brookings A, Parsons AJ (2003) Effects of elevated CO2, nitrogen and fungal endophyte infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Chang Biol 9:425–437

    Google Scholar 

  • Nielsen KA, Tattersall DB, Jones PR, Møller BL (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry 69:88–98

    PubMed  CAS  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2: do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    CAS  Google Scholar 

  • Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol Evol 13:20–24

    PubMed  Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1998) Insect supersense: mate and host location by insects as model systems for exploiting olfactory interactions. Biochemist 20:8–13

    CAS  Google Scholar 

  • Poorter H, Van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ 20:472–482

    CAS  Google Scholar 

  • Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391

    CAS  Google Scholar 

  • Rasmann S, Agrawal AA (2009) Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Curr Opin Plant Biol 12:473–478

    PubMed  CAS  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    PubMed  CAS  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 104:10288–10293

    PubMed  CAS  Google Scholar 

  • Reichardt PB, Chapin FS III, Bryant JP, Mattes BR, Clausen TP (1991) Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: potential importance of metabolite turnover. Oecologia 88:401–406

    Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Recent advances in phytochemistry, vol 10. Plenum, New York, pp 168–213

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel machanisms. Annu Rev Plant Biol 57:675–709

    PubMed  CAS  Google Scholar 

  • Roth SK, Lindroth RL (1995) Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect–parasitoid interactions. Glob Chang Biol 1:173–182

    Google Scholar 

  • Roth S, Lindroth RL, Volin JC, Kruger EL (1998) Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Glob Chang Biol 4:419–430

    Google Scholar 

  • Runion GB, Curl EA, Rogers HH, Backman PA, Rodriguez-Kabana R, Helms BE (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Meteorol 70:117–130

    Google Scholar 

  • Saxon ME, Davis MA, Pritchard SG, Runion GB, Prior SA, Stelzer HE, Rogers HH, Dute RR (2004) Influence of elevated CO2, nitrogen, and Pinus elliottii genotypes on performance of the redheaded pine sawfly, Neodiprion lecontei. Can J Res 34:1007–1017

    CAS  Google Scholar 

  • Schädler M, Roeder M, Brandl R (2007) Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob Chang Biol 13:1005–1015

    Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2004) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199

    CAS  Google Scholar 

  • Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    PubMed  CAS  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Städler E, Buser H-R (1984) Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect. Experientia 40:1157–1159

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    PubMed  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    CAS  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Google Scholar 

  • Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J Ecol 92:132–141

    Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    PubMed  CAS  Google Scholar 

  • Tognetti R, Johnson JD, Michelozzi M, Raschi A (1998) Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2. Environ Exp Bot 39:233–245

    CAS  Google Scholar 

  • Umina PA, Weeks AR, Kearney MR, McKechnie SW, Hoffmann AA (2005) A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308:691–693

    PubMed  CAS  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Google Scholar 

  • Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahavanainen J (2002) Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Chang Biol 8:1240–1252

    Google Scholar 

  • Vuorinen T, Reddy GVP, Nerg AM, Holopainen JK (2004a) Monoterpene and herbivore-induced emission from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos Environ 38:675–682

    CAS  Google Scholar 

  • Vuorinen T, Nerg AM, Ibrahim MA, Reddy GVP, Holopainen JK (2004b) Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol 135:1984–1992

    PubMed  CAS  Google Scholar 

  • Williams RS, Lincoln DE, Thomas RB (1994) Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance. Oecologia 98:64–71

    Google Scholar 

  • Williams RS, Lincoln DE, Thomas RB (1997) Effects of elevated CO2-grown loblolly pine needles on the growth, consumption, development, and pupal weight of red-headed pine sawfly larvae reared within open-topped chambers. Glob Chang Biol 3:501–511

    Google Scholar 

  • Williams RS, Lincoln DE, Norby RJ (2003) Development of gypsy moth larval feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137:114–122

    PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    PubMed  CAS  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels. Nature 327:617–618

    Google Scholar 

  • Woodward F (2002) Potential impacts of global elevated CO2 concentrations on plants. Curr Opin Plant Biol 5:207–211

    PubMed  CAS  Google Scholar 

  • Woodward FI, Bazzaz FA (1988) The responses of stomatal density to CO2 partial pressure. J Exp Bot 39:1771–1781

    Google Scholar 

  • Yong JWH, Wong SC, Letham DS, Hocart CH, Farquhar GD (2000) Effects of elevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiol 124:767–779

    PubMed  CAS  Google Scholar 

  • Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci USA 105:5129–5133

    PubMed  CAS  Google Scholar 

  • Zavala JA, Casteel CL, Nabity PD, Berenbaum MR, DeLucia EH (2009) Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia 161:35–41

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Newman .

Editor information

Editors and Affiliations

Appendices

Appendix 1 References Used for (Figs. 11.2–11.4, 11.6, and 11.7)

Agrell J, McDonald EP, Lindroth RL (2000) Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272

Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2004) Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J Chem Ecol 30:2309–2324

Agrell A, Kopper B, McDonald EP, Lindroth RL (2005) CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Glob Change Biol 11:588–599

Bazin A, Goverde M, Erhardt A, Shykoff (2002) Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus. Ecol Entomol 27:271–278

Bezemer TM, Jones TH, Newington JE (2000) Effects of carbon dioxide and nitrogen fertilzation on phenolic content in Poa annua L. Biochem Syst Ecol 28:839–846

Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424

Booker FL (2000) Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton ( Gossypium hirsutum L.) leaf and root composition. Plant Cell Environ 23:573–583

Booker FL, Maier CA (2001) Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentration in loblolly pine (Pinus taeda) needles. Tree Physiol 21:609–616

Castells E, Roumet C, Penuelas J, Roy J (2002) Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two Mediterranean perennial grasses. Environ Exp Bot 47:205–216

Causin HF, Rufty TW, Reynolds JF (2006) Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: effects of elevated CO2, N supply, and N source. Am J Bot 93:716–723

Centritto M, Nascetti PN, Petrilli L, Raschi A, Loreto F (2004) Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment. Plant Cell Environ 27:403–412

Chen F, Wu G, Ge F, Parajulee MN, Shrestha RB (2005) Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomol Exp Appl 115:341–350

Cipollini ML, Drake BG, Whigham D (1993) Effects of elevated CO2 on growth and carbon/nutrient balance in the deciduous woody shrub Lindera benzoin (L.) Blume (Lauraceae). Oecologia 96:339–346

Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings on nine species of tropical tree. Oecologia 133:62–69

Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Change Biol 5:255–267

Cornelissen T, Stiling P, Drake B (2003) Elevated CO2 decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. Glob Change Biol 10:27–36

Coviella CE, Stipanovic RD, Trumble JT (2002) Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J Exp Bot 53:323–331

Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (2004) Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry 65:2197–2204

Diaz S, Fraser LH, Grime JP, Falczuk (1998) The impact of elevated CO2 on plant-herbivore interactions: experimental evidence of moderating effects at the community level. Oecologia 117:177–186

Dury SJ, Good JEG, Perrins CM, Buse A, Kaye T (1998) The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Glob Change Biol 4:55–61

Estiarte M, Penuelas J, Kimball BA, Hendrix DL, Pinter PJ Jr, Wall GW, LaMorte RL, Hunsaker DJ (1999) Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol Plant 105:423–433

Fajer ED (1989) The effects of enriched CO2 atmospheres on plant-insect herbivore interactions: growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia 81:514–520

Fajer ED, Bowers MD, Bazzaz FA (1992) The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in plantago: a test of the carbon/nutrient balance hypothesis. Am Nat 140:707–723

Gebauer RLE, Strain BR, Reynolds JF (1998) The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pin (Pinus taeda). Oecologia 113:29–36

Gleadow RM, Foley WJ, Woodrow IE (1998) Enhanced CO2 alters the relationship between photosynthesis and defense in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ 21:12–22

Goverde M, Bazin A, Shykoff JA, Erhardt A (1999) Influence of leaf chemistry of Lotus corniculatus (Fabaceae) on larval development of Polyommatus icarus (Lepidoptera, Lycaenidae): effects of elevated CO2 and plant genotype. Funct Ecol 13:801–810

Goverde M, Erhardt A, Niklaus PA (2002) In situ development of a satyrid butterfly on calcareous grassland exposed to elevated carbon dioxide. Ecology 83:1399–1411

Goverde M, Erhardt A, Stocklin J (2004) Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorous availability in calcareous grassland. Oecologia 139:383–391

Hall MC, Stiling P, Moon DC, Drake BG, Hunter MD (2005) Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem. J Chem Ecol 31:267–286

Haring DA, Korner CH (2004) CO2 enrichment reduces the relative contribution of latex and latex-related hydrocarbons to biomass in Euphorbi lathyris. Plant Cell Environ 27:209–217

Hartley SE, Jones CG, Couper GC, Jones TH (2000) Biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Glob Change Biol 6:497–506

Hattas D, Stock WD, Mabusela WT, Green IR (2005) Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO2 concentrations. Glob Planet Change 47:181–192

Hättenschwiler S, Schafellner C (1999) Opposiing effects of elevated CO2 and N desposition on Lymantria monacha larvae feeding on spruce trees. Oecologia 118:210–217

Heyworth CJ, Iason GR, Temperton V, Jarvis PG, Duncan AJ (1998) The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia 115:344–350

Himanen SJ, Nissinen A, Auriola S, Poppy GM, Stewart CNJ, Holopainen JK, Nerg A (2008) Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta 227:427–437

Himanen SJ, Nerg AM, Nissinen A, Pinto DM, Stewart CN Jr, Poppy GM, Holopainen JK (2009) Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol 181:174–186

Holten MK, Lindroth RL, Nordheim EV (2003) Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevate CO2, O3, and plant genotype. Oecologia 137:233–244

Huang W, He X, Chen W, Chen Z, Ruan Y, Xu S (2008) Influence of elevated carbon dioxide and ozone on the foliar nonvolatile terpenoids in Ginkgo biloba. Bull Environ Contam Toxicol 81:432–435

Johnson RH, Lincoln DE (1990) Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia 84:103–110

Johnson RH, Lincoln DE (1991) Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO2 enrichment and soil mineral limitation. Oecologia 87:127–134

Julkunen-Tiitto R, Tahvanainen J, Silvola J (1993) Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.). Oecologia 95:495–498

Kainulainen P, Holopainen JK, Holopainen T (1998) The influence of elevated CO2 and O3 concentrations on Scots pine needles: changes in starch and secondary metabolites over three exposure years. Oecologia 114:455–460

Karowe DN, Seimens DH, Mitchell-Olds T (1997) Species-specific response of glucosinolate content to elevated atmospheric CO2. J Chem Ecol 23:2569–2582

Kerslake JE, Woodin SJ, Hartley SE (1998) Effects of carbon dioxide and nitrogen enrichment on a plant-insect interaction: the quality of Calluna vulgaris as a host for Operophtera brumata. New Phytol 140:43–53

Kinney KK, Lindroth RL, Jung SM, Nordheim EV (1997) Effects of CO2 and NO -3 availability on deciduous trees: phytochemistry and insect performance. Ecology 78:215–230

Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH (2005) Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol 267:207–218

Koike T, Tobita H, Shibata T, Matsuki S, Konno K, Kitao M, Yamashita N, Maruyama Y (2006) Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of CO2 and nitrogen. Popul Ecol 48:23–29

Kopper BJ, Lindroth RL (2003) Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103

Kopper BJ, Lindroth RL, Nordheim EV (2001) CO2 and O3 effects on Paper Birch (Betulaceae: Betula papyrifera) phytochemistry and Whitemarked Tussock Moth (Lymantriidae: Orgyia leucostigma) performance. Environ Entomol 30:1119–1126

Kreuzwieser J, Cojocariu C, Jüssen V, Rennenberg H (2002) Elevated atmospheric CO2 causes seasonal changes in carbonyl emissions from Quercus ilex. New Phytol 154:327–333

Kuokkanen K, Julkunen-Tiitto R, Keinanen M, Niemela P, Tahavanainen J (2001) The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees 15:378–384

Kuokkanen K, Yan S, Niemela P (2003) Effects of elevated CO2 and temperature on the leaf chemistry of birtch Betula pendula (Roth) and the feeding behaviour of the weevil Phyllobius maculicornis. Agric For Entomol 5:209–217

Lavola A, Julkunen-Tiitto R (1994) The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birth, Betula pendula (Roth). Oecologia 99:315–321

Lavola A, Julkuen-Tiitto R, de la Rosa TM, Lehto T, Aphalo PJ (2000) Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiol Plant 109:260–267

Lawler IR, Foley WJ, Woodrow IE, Cork SJ (1997) The effects of elevated CO2 atmospheres on the nutritional quality of eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68

Lincoln DE, Couvet D (1989) The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia 78:112–114

Lindroth RL, Kinney KK (1998) Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J Chem Ecol 24:1677–1695

Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous tree to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777

Lindroth RL, Arteel GE, Kinney KK (1995) Responses of three saturniid species to paper birch grown under enriched CO2 atmospheres. Funct Ecol 9:306–311

Lindroth RL, Roth S, Kruger EL, Volin JC, Koss PA (1997) CO2-mediated changes in aspen chemistry: effects on gypsy moth performance and susceptibility to virus. Glob Change Biol 3:279–289

Lindroth RL, Kopper BJ, Parsons WFJ, Bockheim JG, Karnosky DF, Hendrey GR, Pregitzer KS, Isebrands JG, Sober J (2001) Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloids) and paper birch (Betula papyrifera). Environ Pollut 115:395–404

Lindroth RL, Wood SA, Kopper BJ (2002) Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance. Agric For Entomol 4:315–323

Loreto F, Fischbach RJ, Schnitzler JP, Cicciolo P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 7:709–717

Mansfield JL, Curtis PS, Zak DR, Pregitzer KS (1999) Genotypic variation for condensed tannin production in trembling aspen (Poulus tremuloides, Salicaceae) under elevated CO2 and in high- and low-fertility soil. Am J Bot 86:1154–1159

Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP (2006) Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infections with potato virus Y. Plant Cell Environ 29:126–137

Mattson WJ, Kuokkanen K, Niemela P, Julkunen-Tiitto R, Kellomaki S, Tahvanainen J (2004) Elevated CO2 alters birch resistance to Lagomorpha herbivores. Glob Change Biol 10:1402–1413

Mattson WJ, Julkunen-Tiitto R, Herms DA (2005) CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models? Oikos 111:337–347

McDonald EP, Agrell J, Lindroth RL (1999) CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119:389–399

Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Change Biol 11:1305–1324

Penuelas J, Llusia J (1997) Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J Chem Ecol 23:979–993

Penuelas J, Estiarte M, Kimball BA, Idso SB, Pinter PJ Jr, Wall GW, Garcia RL, Hansaker DJ, LaMorte RL, Hendrix DL (1996) Variety of responses of plant phenolic concentration to CO2 enrichment. J Exp Bot 47:1463–1467

Pritchard S, Peterson C, Runion GB, Priorj S, Rogers H (1997) Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11:494–503

Räisänen T, Ryyppö A, Julkunen-Tiitto R, Kellomaki S (2008) Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.). Trees 22:121–135

Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391

Reddy GVP, Tossavainen P, Nerg AM, Holopainen JK (2004) Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. J Agric Food Chem 52:4185–4191

Reitz SR, Karowe DN, Diawara MM, Trumble JT (1997) Effects of elevated atmospheric carbon dioxide on the growth and linear furanocoumarin content of celery. J Agric Food Chem 45:3642–3646

Rossi AM, Stiling P, Moon DC, Cattell MV, Drake BG (2004) Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. J Chem Ecol 30:1143–1152

Roth SK, Lindroth RL (1994) Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia 98:133–138

Roth SK, Lindroth RL (1995) Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect-parasitoid interactions. Glob Change Biol 1:173–182

Roth S, McDonald EP, Lindroth RL (1997) Atmospheric CO2 and soil water availability: consequences for tree-insect interaction. Can J For Res 27:1281–1290

Roth S, Lindroth RL, Volin JC, Kruger EL (1998) Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Glob Change Biol 4:419–430

Sallas L, Kainulainen P, Utriainen J, Holopainen T, Holopainen JK (2001) The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine (Pinus sylvestris L.) seedlings. Glob Change Biol 7:303–311

Sallas L, Luomala EM, Utriainen J, Kainulainen P, Holopainen JK (2003) Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol 23:97–108

Saxon ME, Davis MA, Pritchard SG, Runion GB, Prior SA, Stelzer HE, Rogers HH, Dute RR (2004) Influence of elevated CO2, nitrogen, and Pinus elliottii genotypes on performance of the redheaded pine sawfly, Neodiprion lecontei. Can J For Res 34:1007–1017

Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler JP, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

Schonhof I, Kläring HP, Krumbein A, Schreiner M (2007) Interaction between atmospheric CO2 and glucosinolates in broccoli. J Chem Ecol 33:105–114

Snow MD, Bard RR, Olszyk DM, Minster LM, Hager AN, Tingey DT (2003) Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol Plant 117:352–358

Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effects of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21:437–445

Tognetti R, Johnson JD, Michelozzi M, Raschi A (1998) Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2. Environ Exp Bot 39:233–245

Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahavanainen J (2002) Effects of elevated CO2 and temperature n plant growth and herbivore defensive chemistry. Glob Change Biol 8:1240–1252

Veteli TO, Mattson WJ, Niemela P, Julkunen-Tiitto R, Kellomaki S, Kuokkanen K, Lavola A (2007) Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees? J Chem Ecol 33:287–296

Vuorinen T, Reddy GVP, Nerg AM, Holopainen JK (2004) Monoterpene and herbivore-induced emission from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos Environ 38:675–682

Vuorinen T, Nerg AM, Vapaavuori E, Holopainen JK (2005) Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations. Atmos Environ 39:1185–1197

Wang XW, Ji LZ, Zhang QH, Liu Y, Wang GQ (2009) Effects of elevated CO2 on feeding preference and performance of the gypsy moth (Lymantria dispar) larvae. J Appl Entomol 133:47–57

Williams RS, Lincoln DE, Thomas RB (1994) Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance. Oecologia 98:64–71

Williams RS, Lincoln DE, Thomas RB (1997) Effects of elevated CO2-grown loblolly pine needles on the growth, consumption, development, and pupal weight of red-headed pine sawfly larvae reared within open-topped chambers. Glob Change Biol 3:501–511

Williams RS, Lincoln DE, Norby RJ (1998) Leaf age effects of elevated CO2-grown white oak leaves on spring-feeding lepidopterans. Glob Change Biol 4:235–246

Williams RS, Norby RJ, Lincoln DE (2000) Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Glob Change Biol 6:685–695

Williams RS, Lincoln DE, Norby RJ (2003) Development of gypsy moth larvar feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137:114–122

Wu G, Chen FJ, Ge F, Sun YC (2007) Effects of elevated carbon dioxide on the growth and foliar chemistry of transgenic Bt Cotton. J Integr Plant Biol 49:1361–1369

Ziska LH, Emche SD, Johnson EL, George K, Reed DR, Sicher RC (2005) Alterations in the productions and concentration of selected alkaloids as a function of rising atmospheric carbon dioxide and air temperature: implications for ethno-pharmacology. Glob Change Biol 11:1798–1807

Appendix 2 List of Abbreviations for Fig. 11.5

ImiAlk:

Imidazole alkaloids

AromAlk:

Aromatic alkaloids

Quinazoline alkaloids (from anthranilate, precursor of l-Trp)

Quinoline alkaloids (from anthranilate, precursor of l-Trp)

Acridine alkaloids (from anthranilate, precursor of l-Trp)

Indole alkaloids (from l-Trp)

Quinoline alkaloids (from l-Trp)

Tetrahydroisoquinoline alkaloids (from l-Tyr)

Benzylisoquinoline alkaloids (from l-Tyr)

Amaryllidaceae alkaloids (from l-Tyr)

PyrAlk:

Pyridine alkaloids (from nicotinate, product of l-Asp)

PipAlk:

Piperidine alkaloids (from l-Lys)

QuinoAlk:

Quinolizidine alkaloids (from l-Lys)

IndoAlk:

Indolizidine alkaloids (from l-Lys)

PyrroAlk:

Pyrrolizidine and pyrrolidine alkaloids (from l-Orn)

TropAlk:

Tropane alkaloids

CyG:

Cyanogenic glycosides

GSL:

Glucosinolates

PhenProp:

Phenylpropanoids (includes hydroxycinnamic acids, e.g. caffeic acid, and their esters, e.g. chlorogenic acid; also hydroxycinnamic aldehydes and alcohols)

(Iso)Flav:

Isoflavonoids and flavonoids

Anthocy:

Anthocyanins

CTs:

Condensed tannins

HTs:

Hydrolyzable tannins, e.g. ellagitannins

…terp:

…terpene

CardiacGlyc:

Cardiac glycosides

SteroidSap:

Steroid saponins

SA:

Salicylic acid

ABA:

Abscisic acid

Strigolact:

Strigolactone

Gibberel:

Gibberellins

BrassSter:

Brassinosteroids

Jasm:

Jasmonates

Ubiquin:

Ubiquinones

Plastoquin:

Plastoquinones

MemSterols:

Membrane sterols like e.g. cholesterol

Amino acids:

Amino acids

l-His:

l-Histidine

l-Trp:

l-Tryptophan

l-Phe:

l-Phenylalanine

l-Tyr:

l-Tyrosine

l-Ala:

l-Alanine

l-Val:

l-Valine

l-Leu:

l-Leucine

l-Asp:

l-Aspartate

l-Asn:

l-Asparagine

l-Met:

l-Methionine

l-Thr:

l-Threonine

l-Ile:

l-Isoleucine

l-Lys:

l-Lysine

l-Glu:

l-Glutamate

l-Gln:

l-Glutamine

l-Arg:

l-Arginine

l-Pro:

l-Proline

l-Orn:

l-Ornithine

l-Gly:

l-Glycine

l-Ser:

l-Serine

l-Cys:

l-Cysteine

Isoprenoid/terpene intermediates:

Isoprenoid/terpene intermediates

IPP:

Isopentenylpyrophosphate

GPP:

Geranylpyrophosphate

FPP:

Farnesylpyrophosphate

GGPP:

Geranylgeranylpyrophosphate

Shik:

Shikimate

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ryan, G.D., Rasmussen, S., Newman, J.A. (2010). Global Atmospheric Change and Trophic Interactions: Are There Any General Responses?. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_11

Download citation

Publish with us

Policies and ethics