Defective Areas Identification in Aircraft Components by Bivariate EMD Analysis of Ultrasound Signals

  • Marco Leo
  • David Looney
  • Tiziana D’Orazio
  • Danilo P. Mandic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5998)

Abstract

In recent years many alternative methodologies and techniques have been proposed to perform non-destructive inspection and maintenance operations of moving structures. In particular, ultrasonic techniques have shown to be very promising for automatic inspection systems. From the literature, it is evident that the neural paradigms are considered, by now, the best choice to automatically classify ultrasound data. At the same time the most appropriate pre-processing technique is still undecided. The aim of this paper is to propose a new and innovative data pre-processing technique that allows the analysis of the ultrasonic data by a complex extension of the Empirical Mode Decomposition (EMD). Experimental tests aiming to detect defective areas in aircraft components are reported and a comparison with classical approaches based on data normalization or wavelet decomposition is also provided.

Keywords

Discrete Fourier Transform Empirical Mode Decomposition Phase Synchrony Ensemble Empirical Mode Decomposition Ultrasound Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boller, C., Chang, F.-K., Fujino, Y.: Encyclopedia of Structural Health Monitoring. John Wiley & Sons, Chichester (2009)CrossRefGoogle Scholar
  2. 2.
    Looney, D., Park, C., Kidmose, P., Ungstrup, M., Mandic, D.P.: Measuring phase synchrony using complex extensions of EMD. In: IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 49–52 (2009)Google Scholar
  3. 3.
    Wu, Z., Huang, N.E.: Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Center for Ocean-Land-Atmosphere Studies, vol. 193 (2004)Google Scholar
  4. 4.
    Shah, A.A., Ribakov, Y., Hirose, S.: Nondestructive evaluation of damaged concrete using nonlinear ultrasonics. Materials and Design 30(3), 775–782 (2009)CrossRefGoogle Scholar
  5. 5.
    Ruiz-Reyes, N., Vera-Candeas, P., Curpian-Alonso, J., Cuevas-Martýnez, J.C., Blanco-Claraco, J.L.: High-resolution pursuit for detecting flaw echoes close to the material surface in ultrasonic. NDT&E International 39, 487–492 (2006)CrossRefGoogle Scholar
  6. 6.
    Ravanbod, H.: Application of neuro-fuzzy techniques in oil pipeline ultrasonic nondestructive testing. NDT&E International 38, 643–653 (2005)CrossRefGoogle Scholar
  7. 7.
    Bettayeb, F., Rachedi, T., Benbartaoui, H.: An improved automated ultrasonic NDE system by wavelet and neuron networks. Proceedings of Ultrasonics International 42(1-9), 853–858 (2003)CrossRefGoogle Scholar
  8. 8.
    Gil Pita, R., Vicen, R., Rosa, M., Jarabo, M.P., Vera, P., Curpian, J.: Ultrasonic flaw detection using radial basis function networks (RBFNs). Proceedings of Ultrasonics International 42(1-9), 361–365 (2003)CrossRefGoogle Scholar
  9. 9.
    Margrave, F.W., Rigas, K., Bradley, D.A., Barrowcliffe, P.: The use of neural network in ultrasonic flaw detection. Measurement 25, 143–154 (1999)CrossRefGoogle Scholar
  10. 10.
    Nath, S.K., Balasubramaniam, K., Krishnamurthy, C.V., Narayana, B.H.: An Ultrasonic Time of Flight Diffraction Technique for Characterization of Surface-Breaking Inclined Cracks. Materials Evaluation 67(2), 141–148 (2009)Google Scholar
  11. 11.
    Rizzo, P., Bartoli, I., Marzani, A., Lanza di Scalea, F.: Defect Classification in Pipes by Neural Networks Using Multiple Guided Ultrasonic Wave Features Extracted After Wavelet Processing. J. Pressure Vessel Technol. 127(3), 294–303 (2005)CrossRefGoogle Scholar
  12. 12.
    Wagle, S., Katoa, H.: Ultrasonic wave intensity reflected from fretting fatigue cracks at bolt joints of aluminum alloy plates. NDT&E Int. 42(8), 690–695 (2009)CrossRefGoogle Scholar
  13. 13.
    Meksen, T.M., Boudraa, B., Boudraa, M.: Defects Clustering using Kohonen Networks during Ultrasonic Inspection. IAENG International Journal of Computer Science 36(3) (2009) (online publication)Google Scholar
  14. 14.
    D’Orazio, T., Leo, M., Distante, A., Guaragnella, C., Pianese, V., Cavaccini, G.: Automatic Ultrasonic Inspection for Internal Defect Detection in Composite Materials. Independent NonDestructive Testing and Evaluation 41(2), 145–154 (2008)Google Scholar
  15. 15.
    Gonzales, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2008)Google Scholar
  16. 16.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Quanan, Z., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A 454, 903–995 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Tanaka, T., Mandic, D.P.: Complex Empirical Mode Decomposition. IEEE Signal Processing Letters 14(2), 101–104 (2007)CrossRefGoogle Scholar
  18. 18.
    Rilling, G., Flandrin, P., Goncalves, P., Lilly, J.M.: Bivariate Empirical Mode Decomposition. IEEE Signal Processing Letters 14(12), 936–939 (2007)CrossRefGoogle Scholar
  19. 19.
    Umair Bin Altaf, M., Gautama, T., Tanaka, T., Mandic, D.P.: Rotation Invariant Complex Empirical Mode Decomposition. In: Proceedings of the Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. 1009–1012 (2007)Google Scholar
  20. 20.
    Looney, D., Mandic, D.: Multi-Scale Image Fusion using Complex Extensions of EMD. IEEE Transactions on Signal Processing 57(4), 1626–1630 (2009)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Cohen, L.: Instantaneous anything. In: Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 5, pp. 105–108 (1993)Google Scholar
  22. 22.
    Sweeny-Reed, C.M., Nasuto, S.J.: A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. Journal of Computational Neuroscience 23(1), 79–111 (2007)CrossRefGoogle Scholar
  23. 23.
    Tass, P., et al.: Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography. Physical Rev. Letters 81(15), 3291–3294 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marco Leo
    • 1
  • David Looney
    • 2
  • Tiziana D’Orazio
    • 1
  • Danilo P. Mandic
    • 2
  1. 1.Italian National Research CouncilInstitute of Intelligent Systems for AutomationBariItaly
  2. 2.Department of Electrical and Electronic EngineeringImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations