Neural Network Cascade for Facial Feature Localization

  • Thibaud Senechal
  • Lionel Prevost
  • Shehzad Muhammad Hanif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5998)


We present here a complete system for the localization of facial features in frontal face images. In the first step, face detection is performed using Viola & Jones state of art algorithm. Then, a cascade of neural networks localizes precisely 28 facial features. The first network performs a coarse detection of three areas in the image corresponding roughly to left and right eyes and mouths. Then, three local networks localize, in these areas, 9 key points per eye and 10 key points on the mouth. Thorough experiments on 3500 images from standard databases (Feret, BioID) show the detector accuracy, its generalization ability and speed.


  1. 1.
    Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Pantic, M., Rothkrantz, L.: Automatic analysis of facial expressions: The state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1424–1445 (2000)Google Scholar
  3. 3.
    Cootes, T., Taylor, C., Cooper, D., Graham, J., et al.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  4. 4.
    Milborrow, S.: Locating Facial Features with Active Shape Models. PhD thesis, Faculty of Engineering, University of Cape Town (2007)Google Scholar
  5. 5.
    Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2004)CrossRefGoogle Scholar
  6. 6.
    Duffner, S., Garcia, C.: A connexionist approach for robust and precise facial feature detection in complex scenes. In: Image and Signal Processing and Analysis, pp. 316–321 (2005)Google Scholar
  7. 7.
    Hanif, S.M., Prevost, L., Belaroussi, R., Milgram, M.: Real-time facial feature localization by combining space displacement neural networks. Pattern Recognition Letters 29(8), 1094–1104 (2008)CrossRefGoogle Scholar
  8. 8.
    Yan, S., Li, M., Zhang, H., Cheng, Q.: Ranking prior likelihood distributions for bayesian shape localization framework. In: International Conference on Computer Vision, pp. 51–58 (2003)Google Scholar
  9. 9.
    Nguyen, M., Perez, J., De la Torre Frade, F.: Facial feature detection with optimal pixel reduction svms. In: International Conference on Automatic Face and Gesture Recognition (2008)Google Scholar
  10. 10.
    Cristinacce, D., Cootes, T.: Facial feature detection using adaboost with shape constraints. In: British Machine Vision Conference, vol. 1, pp. 231–240 (2003)Google Scholar
  11. 11.
    Vukadinovic, D., Pantic, M.: Fully automatic facial feature point detection using gabor feature based boosted classifiers. In: International Conference on Systems, Man and Cybernetics, vol. 2 (2005)Google Scholar
  12. 12.
    Duffner, S., Garcia, C.: A hierarchical approach for precise facial feature detection. In: Compression et Representation des Signaux Audiovisuels (2005)Google Scholar
  13. 13.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  14. 14.
    Jesorsky, O., Kirchberg, K., Frischholz, R., et al.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thibaud Senechal
    • 1
  • Lionel Prevost
    • 1
  • Shehzad Muhammad Hanif
    • 1
  1. 1.ISIR, CNRS UMR7222Universite Pierre and Marie Curie-Paris 6Paris Cedex 5France

Personalised recommendations