Skip to main content

Controlling Complex Dynamics with Artificial Biochemical Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6021))

Abstract

Artificial biochemical networks (ABNs) are computational models inspired by the biochemical networks which underlie the cellular activities of biological organisms. This paper shows how evolved ABNs may be used to control chaotic dynamics in both discrete and continuous dynamical systems, illustrating that ABNs can be used to represent complex computational behaviours within evolutionary algorithms. Our results also show that performance is sensitive to model choice, and suggest that conservation laws play an important role in guiding search.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W.: Artificial chemistries—towards constructive dynamical systems. Solid State Phenomena 97/98, 43–50 (2004)

    Google Scholar 

  2. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62. Kluwer, Dordrecht (2003)

    Google Scholar 

  3. Beer, R.D.: Beyond control: The dynamics of brain-body-environment interaction in motor systems. In: Sternad, D. (ed.) Progress in Motor Control V: A Multidisciplinary Perspective, pp. 7–24. Springer, Heidelberg (2009)

    Google Scholar 

  4. Bollt, E.M., Meiss, J.D.: Controlling chaotic transport through recurrence. Physica D: Nonlinear Phenomena 81(3), 280–294 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chirikov, B.V.: Research concerning the theory of nonlinear resonance and stochasticity. Tech. rep., Institute of Nuclear Physics, Novosibirsk (1969)

    Google Scholar 

  6. Decraene, J., Mitchell, G.G., McMullin, B.: Evolving artificial cell signaling networks: Perspectives and methods. In: Dressler, F., Carreras, I. (eds.) Advances in Biologically Inspired Information Systems, pp. 167–186. Springer, Heidelberg (2007)

    Google Scholar 

  7. Dellaert, F., Beer, R.D.: A developmental model for the evolution of complete autonomous agents. In: Maes, P., et al. (eds.) From Animals to Animats 4: Proc. 4th Int. Conf. Simulation of Adaptive Behavior. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: A sub-symbolic artificial chemistry. In: Proc. ECAL 2009. LNCS. Springer, Heidelberg (2009)

    Google Scholar 

  9. Fisher, M.J., Paton, R.C., Matsuno, K.: Intracellular signalling proteins as ‘smart’ agents in parallel distributed processes. BioSystems 50, 159–171 (1999)

    Article  Google Scholar 

  10. Fontana, W.: Algorithmic chemistry. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 159–210. Addison-Wesley, Reading (1992)

    Google Scholar 

  11. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  Google Scholar 

  12. Kumar, S.: The evolution of genetic regulatory networks for single and multicellular development. In: Keijzer, M. (ed.) GECCO 2004 Late Breaking Papers (2004)

    Google Scholar 

  13. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  14. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schroer, C.G., Ott, E.: Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7, 512–519 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. 2, ch. 52. Springer, Heidelberg (2009)

    Google Scholar 

  17. Taylor, T.: A genetic regulatory network-inspired real-time controller for a group of underwater robots. In: Groen, F., et al. (eds.) Intelligent Autonomous Systems 8 (Proceedings of IAS8), pp. 403–412. IOS Press, Amsterdam (2004)

    Google Scholar 

  18. Zhan, S., Miller, J.F., Tyrrell, A.M.: An evolutionary system using development and artificial genetic regulatory networks. In: Wang, J. (ed.) 2008 IEEE CEC. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  19. Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artificial Life 7, 171–190 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lones, M.A., Tyrrell, A.M., Stepney, S., Caves, L.S. (2010). Controlling Complex Dynamics with Artificial Biochemical Networks. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds) Genetic Programming. EuroGP 2010. Lecture Notes in Computer Science, vol 6021. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12148-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12148-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12147-0

  • Online ISBN: 978-3-642-12148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics