Skip to main content

Nonlinear Plates and Waves

  • Chapter
Nonlinear Deformable-body Dynamics

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

  • 1179 Accesses

Abstract

This chapter will present a nonlinear plate theory from three-dimensional elastic theory, and the approximate theories of thin plates will be discussed. From such a theory, approximate solutions for nonlinear waves in traveling plates and rotating disks will be presented. In addition, stationary and resonant waves in the traveling plates and rotating disks will be discussed. Finally, chaotic waves in traveling plates under periodic excitation will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Advani, S.H., 1967, Stationary waves in a thin spinning disk, International Journal of Mechanical Science, 9, 307–313.

    Article  MATH  Google Scholar 

  • Byrd, P.F. and Friedman, M.D., 1954, Handbook of Elliptic integrals for Engineers and Physicists, Springer, Berlin.

    MATH  Google Scholar 

  • Chien, W., 1944a, The intrinsic theory of thin shells and plates I: General theory, Quarterly of Applied Mathematics, 1, 297–327.

    MathSciNet  Google Scholar 

  • Chien, W.,1944b, The intrinsic theory of thin shells and plates II: Application to thin plates, Quarterly of Applied Mathematics, 2, 43–59.

    Google Scholar 

  • Chu, H.N. and Herrmann, G., 1956, Influence of large amplitudes on free flexural vibrations of rectangular elastic plates, ASME Journal of Applied Mechanics, 23, 532–540.

    MathSciNet  MATH  Google Scholar 

  • Eringen, A.C., 1962, Nonlinear Theory of Continuous Media, McGraw-Hill, New York.

    Google Scholar 

  • Eringen, A.C., 1967, Mechanics of Continua, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Guo, Z.H., 1980, Nonlinear Elasticity, Science Press, Beijing.

    MATH  Google Scholar 

  • Han, R.P.S. and Luo, A.C.J., 1998, Resonant layer in nonlinear dynamics, ASME Journal of Applied Mechanics, 65, 727–736.

    Article  MathSciNet  ADS  Google Scholar 

  • Herrmann, G., 1955, Influence of large amplitudes on flexural motions of elastic plates, NACA Technical Note 3578.

    Google Scholar 

  • Kirchhoff, G., 1850a, Ãœber das Gleichgewicht und die Bewegung einer elastischen Scheibe, Journal fur die reins und angewandte Mathematik, 40, 51–88.

    MATH  Google Scholar 

  • Kirchhoff, G., 1850b, Ueber die Schwingungen einer kreisformigen elastischen Scheibe, Poggendorffs Annal, 81, 258–264.

    Google Scholar 

  • Lamb, H. and Southwell, R.V., 1921, The vibrations of a spinning disc, Proceedings of Royal Society of London, 99, 272–280.

    Article  ADS  Google Scholar 

  • Levy, S., 1942, Large deflection theory for rectangular plate, Proceedings of the first Symposium on Applied Mathematics, 1, 197–210.

    Google Scholar 

  • Lichtenberg, A.J. and Lieberman, M.A., 1992, Regular and Chaotic Dynamics, Springer, New York.

    MATH  Google Scholar 

  • Luo, A.C.J., 1995, Analytical modeling of bifurcations, chaos and multifractals in nonlinear dynamics, Ph.D. dissertation, University of Manitoba.

    Google Scholar 

  • Luo, A.C.J., 2000, An approximate theory for geometrically-nonlinear, thin plates, International Journal of Solids and Structures, 37, 7655–7670.

    Article  MATH  Google Scholar 

  • Luo, A.C.J., 2002, Resonant layers in a parametrically excited pendulum, International Journal of Bifurcation and Chaos, 2002, 12, 409–419.

    Article  Google Scholar 

  • Luo, A.C.J., 2003, Resonant and stationary waves in axially traveling thin plates, IMeChE Part K, Journal ofMultibody Dynamics, 217, 187–199.

    Article  Google Scholar 

  • Luo, A.C.J., 2005, Chaotic motion in resonant separatrix zones of periodically forced, axially traveling, thin plates, IMeChE Part K: Journal of Multi-body Dynamics, 219, 237–247.

    Article  Google Scholar 

  • Luo, A.C.J., 2008, Global Transversality, Resonance and Chaotic Dynamics, World Scientific, Singapore.

    Google Scholar 

  • Luo, A.C.J. and Hamidzadeh, H.R., 2004, Equilibrium and buckling Stability for axially traveling plates, Communications in Nonlinear Science and Numerical Simulation, 9, 343–360.

    Article  ADS  MATH  Google Scholar 

  • Luo, A.C.J. and Han, R.P.S., 2001, The resonant theory for stochastic layers in nonlinear dynamic systems, Chaos, Solitons and Fractals, 12, 2493–2508.

    Article  ADS  MATH  Google Scholar 

  • Luo, A.C.J. and Mote, C.D. Jr., 2000, Nonlinear vibration of rotating, thin disks, ASME Journal of Vibration and Acoustics, 122, 376–383.

    Article  Google Scholar 

  • Luo, A.C.J. and Tan, C.A., 2001, Resonant and stationary waves in rotating disks, Nonlinear Dynamics, 24, 357–372.

    Article  Google Scholar 

  • Malvern, L.E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Nowinski, J.L., 1964, Nonlinear transverse vibrations of a spinning disk, ASME Journal of Applied Mechanics, 31, 72–78.

    Google Scholar 

  • Nowinski, J.L., 1981, Stability of nonlinear thermoelastic waves in membrane-like spinning disk, Journal of Thermal Science, 4, 1–11.

    Google Scholar 

  • Pasic, H. and Hermann, G., 1983, Nonlinear free vibrations of buckled plates with deformable loaded edges, Journal of Sound and Vibration, 87, 105–114.

    Article  ADS  MATH  Google Scholar 

  • Reissner, E., 1944, On the theory of bending of elastic plates, Journal of Mathematics and Physics, 23, 184–191.

    MathSciNet  MATH  Google Scholar 

  • Reissner, E., 1957, Finite twisting and bending of thin rectangular elastic plates, ASME Journal of Applied Mechanics, 24, 391–396.

    MathSciNet  MATH  Google Scholar 

  • Saniei, N. and Luo, A.C.J., 2001, Thermally induced, nonlinear vibration of rotating disks, Nonlinear Dynamics, 26, 393–409.

    Article  MATH  Google Scholar 

  • Saniei, N. and Luo, A.C.J., 2007, Nonlinear vibrations of heated, co-rotating disks, Journal of Vibration and Control, 13, 583–601.

    Article  MATH  Google Scholar 

  • Southwell, R.V., 1922, On the free transverse vibrations of a uniform circular disc clamped at its centre, and on the effects of rotation, Proceedings of Royal Society of London, 101, 133–153.

    Article  ADS  Google Scholar 

  • Timoshenko, S., 1940, Theory of Plates and Shells, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Tobias, S.A., 1957, Free undamped nonlinear vibrations of imperfect circular disks, Proceedings of the Institute of Mechanical Engineers, 171, 691–701.

    Article  Google Scholar 

  • von Karman, T., 1910, Festigkeitsprobleme im mashinenbau, Encyklopadie der Mathematischen Wissenschaften, Teubner, Leipzig, 4, 348–352.

    Google Scholar 

  • Wempner, G., 1973, Mechanics of Solids, McGraw-Hill, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, A.C.J. (2010). Nonlinear Plates and Waves. In: Nonlinear Deformable-body Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12136-4_6

Download citation

Publish with us

Policies and ethics