Skip to main content

Introduction

  • Chapter

Part of the book series: Nonlinear Physical Science ((NPS,volume 0))

Abstract

To investigate deformable-body dynamics, it is very important to learn a development history of the mathematical theory of deformable solids. From such a development history, one can find how the deformable-body dynamics to stimulate the development of modern physical science, which will give people a kind of indication for new discoveries. In this chapter, a brief history for establishing the approximate theories of deformable solids will be given. Especially, the cable dynamics will be discussed first, and a mathematical treatise of nonlinear beams and rods will be presented. In addition, the past and current status of plates and shell theory will be discussed, and the current status of soft web theory and applications will be presented. Finally, the book layout will be presented, and a brief summarization for each chapter will be given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G.G., 1993, Elastic wrinkling of a tensioned circular plate using von Karman plate theory, ASME Journal of Applied Mechanics, 60, 520–525.

    Article  ADS  MATH  Google Scholar 

  • Antman, S.S., 1972, The theory of rods, Handbuch der Physik, Vol. VIa/2, Springer, Berlin.

    Google Scholar 

  • Antman, S.S., 1979, Multiple equilibrium states of nonlinear elastic strings, SIAM Journal of Applied Mathematics, 37, 588–604.

    Article  MathSciNet  MATH  Google Scholar 

  • Antman, S.S. and Warner, W.H., 1966, Dynamic theory of hyperelastic rods, Archives for Rational Mechanics and Analysis, 40, 329–372.

    MathSciNet  ADS  Google Scholar 

  • Atai, A.A. and Steigmann, D.J., 1997, On the nonlinear mechanics of discrete networks, Archive of Applied Mechanics, 67, 303–319.

    Article  ADS  MATH  Google Scholar 

  • Atanackovic, T.M. and Cveticanin, L.J., 1996, Dynamics of plane motion of an elastic rod, ASME Journal of Applied Mechanics, 63, 392–398.

    Article  ADS  MATH  Google Scholar 

  • Basset, A.B., 1890, On the extension and flexure of cylindrical and spherical thin elastic shells, Philosophical Transaction of Royal Society of London, 181A, 433–480.

    ADS  Google Scholar 

  • Berdichevsky, V.L., 1982, On the energy of an elastic rod, PMM, 45, 518–529.

    Google Scholar 

  • Berdichevsky, V.L., Kim, W.W. and Ozbek, A., 1995, Dynamics potential for nonlinear vibrations of cantilevered beams, Journal of Sound and Vibration, 179, 151–164.

    Article  ADS  Google Scholar 

  • Cao, D.Q., Liu, D. and Wang, C.H.-T., 2005, Nonlinear dynamic modeling for MEMS components with the Cosserat rod element approach, Journal of Micromechanics and Microengineering, 15, 1334–1343.

    Article  ADS  Google Scholar 

  • Cao, D.Q., Liu, D. and Wang, C.H.-T., 2006, Three-dimensional nonlinear dynamics of slender structure: Cosserat rod element approach, International Journal of Solids and Structures, 43, 760–783.

    Article  MATH  Google Scholar 

  • Cao, D.Q., Tucker, R.W., 2008, Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and simulations, International Journal of Solids and Structures, 45, 460–477.

    Article  MATH  Google Scholar 

  • Chien, W.Z., 1944a, The intrinsic theory of thin shells and plates I: General theory, Quarterly of Applied Mathematics, 1, 297–327.

    MathSciNet  Google Scholar 

  • Chien, W.Z., 1944b, The intrinsic theory of thin shells and plates II: Application to thin plates, Quarterly of Applied Mathematics, 2, 43–59.

    MathSciNet  Google Scholar 

  • Clebsch, A., 1862, Theories der Elasticität fester Körper, Teubner, Leipzig.

    Google Scholar 

  • Cohn, H., 1966, A non-linear theory of elastic directed curves, International Journal of Engineering Science, 40, 511–524.

    Article  Google Scholar 

  • Cohn, H. and DeSilva, C.N., 1966, Nonlinear theory of elastic surfaces, Journal of Mathematical Physics, 7, 246–253.

    Article  MathSciNet  ADS  Google Scholar 

  • Coleman, B.D. and Dill, E.H.,1992, Flexure waves in elastic rods, Journal of the Acoustical Society of America, 91, 2663–2673.

    Article  MathSciNet  ADS  Google Scholar 

  • Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z. and Tobias, I., 1993, On the dynamics of rods in the theory of Kirchhoff and Clebsch, Archives for Rational Mechanics and Analysis, 121, 339–359.

    Article  MathSciNet  ADS  Google Scholar 

  • Coleman, B.D., Lembo, M., Tobias, I., 1996, A new class of flexure-free torsional vibration of annular rods, Meccanica, 31, 565–575.

    Article  MATH  Google Scholar 

  • Colemen, B.D. and Swigon, D., 2004, Theory of self-contact in Kirchhoff rods with applications in supercoiling of knotted and unknotted DNA plasmids, Philosophical Transactions of the Royal Society London A, 362, 1281–1299.

    Article  ADS  Google Scholar 

  • Coleman, B.D., Tobias, I., Swigon, D, 1995, Theory of the influence of end conditions on self-contact in DNA loops, Journal of Chemical Physics, 103, 9101–9109.

    Article  ADS  Google Scholar 

  • Cosserat, E. and Cosserat, F., 1896, Sur la thérorie de l’élasticité, premier Mémiore, Annales de la Faculté des Sciences de Toulouse, 10, 1–116.

    MathSciNet  ADS  Google Scholar 

  • Cosserat, E. and Cosserat, F., 1909, Theorie des Corps Deformables, 953–1173, Hermann, Paris.

    Google Scholar 

  • Crespo da Silva, M.R.M. 1991, Equations for nonlinear analysis of 3D motions of beams, Applied Mechanics Review, 44, 51–59.

    Article  ADS  Google Scholar 

  • Crespo da Silva, M.R.M. and Glynn, C.C., 1978a, Nonlinear flexural-flexural-torsional dynamics of inextensional beams-I: equations of motion, Journal of Structural Mechanics, 6, 437–448.

    Google Scholar 

  • Crespo da Silva, M.R.M. and Glynn, C.C., 1978b, Nonlinear flexural-flexural-torsional dynamics of inextensional beams-II: forced motion, Journal of Structural Mechanics, 6, 449–461.

    Google Scholar 

  • Danielson, D.A. and Hodge, D.H., 1987, Nonlinear beam kinematics by decomposition of the rotation tensor, ASME Journal of Applied Mechanics, 54, 258–262.

    Article  ADS  MATH  Google Scholar 

  • DeSilva, C.N. and Whitman, A.B., 1971, A thermo-dynamical theory of directed curves, Journal of Mathematical Physics, 12, 1603–1609.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dickey, R.W., 1969, The nonlinear string under a vertical force, SIAM Journal of Applied Mathematics, 17, 172–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Duhem, P., 1906, Researches sur V élasticité, Cauthier-Villars, Paris.

    Google Scholar 

  • Ericksen J.L. and Truesdell, C., 1958, Exact theory of stress and strain in rods and shells, Archives for Rational Mechanics and Analysis, 1, 295–323.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Galileo, G., 1638, Discorsi e Dimostrasioni Matematiche, Leiden.

    Google Scholar 

  • Galerkin, B.G., 1915, Series solutions of elastic equilibrium of rods and plates, VestnikInzhenerov, 1, 187–208.

    Google Scholar 

  • Gol’denveizer, 1944, Applicability of the general theorems of the theory of elasticity to the thin shells, Journal of Applied Mathematics and Mechanics (Akad. Nauk SSSR Prikl. Mat. Mekh.), 8, 3–14.

    Google Scholar 

  • Green, A.E., 1959, The equilibrium of rods, Archives for Rational Mechanics and Analysis, 3, 417–421.

    Article  ADS  MATH  Google Scholar 

  • Green, A.E., Knops, R.J. and Laws, N., 1968, Large deformations, superposed small deformation and stability of elastic rods, International Journal of Solids and Structures, 4, 555–577.

    Article  MATH  Google Scholar 

  • Green, A.E. and Laws, N., 1966, A general theory of rods, Proceedings of Royal Society of London, 293 A, 145–155.

    ADS  Google Scholar 

  • Green, A.E., Laws, N. and Naghdi, P.M., 1967, A linear theory of straight elastic rods, Archives for Rational Mechanics and Analysis, 25, 285–298.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M. and Rivlin, R.S., 1965, Directors and multipolar displacements in continuum mechanics, International Journal of Engineering Science, 2, 611–620.

    Article  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M. and Wainwright, W.L., 1965, A general theory of a Cosserat surface, Archives for Rational Mechanics and Analysis, 20, 287–308.

    Article  MathSciNet  ADS  Google Scholar 

  • Hagedorn, P. and Schafer, B., 1980, On nonlinear free vibrations of an elastic cable, International Journal of Nonlinear Mechanics, 15, 333–340.

    Article  ADS  MATH  Google Scholar 

  • Hay, G.E., 1942, The finite displacement of thin rods, Transactions of American Mathematical Society, 51, 65–102.

    MathSciNet  Google Scholar 

  • Healey, T.J. and Papadopoulos, J.N., 1990, Steady axial motions of strings, ASME Journal of Applied Mechanics, 57, 785–787.

    Article  ADS  Google Scholar 

  • Herrmann, G., 1955, Influence of large amplitudes on flexural motions of elastic plates, NACA Technical Note 3578.

    Google Scholar 

  • Ho, C.H., Scott, R.A. and Eisley, J.G., 1975, Non-planar, nonlinear oscillations of beams-I: forced motions, International Journal of Nonlinear Mechanics, 10, 113–127.

    Article  ADS  MATH  Google Scholar 

  • Ho, C.H., Scott, R.A. and Eisley, J.G., 1976, Non-planar, nonlinear oscillations of beams-II: free motions, International Journal of Sound and Vibration, 47, 333–339.

    Article  ADS  MATH  Google Scholar 

  • Hodges, D.H., 1990, A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams, International Journal of Solids and Structures, 26, 1253–1273.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, D.H., Atilgan, A.R. and Danielson, D.A., 1993, A geometrically nonlinear theory of elastic plates, ASME Journal of Applied Mechanics, 60, 109–116.

    Article  ADS  MATH  Google Scholar 

  • Holmes, P.J. and Marsden, J., 1981, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Archives for Rational Mechanics and Analysis, 76, 135–166.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hooke, R., 1678, DePotentia Restitutiva, London.

    Google Scholar 

  • Hopkins, H.J., 1970, A Span of Bridge, Newton Abbot, David and Charles, England.

    Google Scholar 

  • Irvine, H.M., 1981, Cable Structures, The MIT Press, Cambridge.

    Google Scholar 

  • Irvine, H.M. and Caughey, T.K., 1974, The linear theory of free vibrations of a suspended cable, Proceedings of the Royal Society London, 341A, 299–315.

    ADS  Google Scholar 

  • Kirchhoff, G., 1850a, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, Journal für die reins und angewandte Mathematik, 40, 51–88.

    MATH  Google Scholar 

  • Kirchhoff, G., 1850b, Ueber die Schwingungen einer kreisformigen elastischen Scheibe, Poggendorffs Annal, 81, 258–264.

    Google Scholar 

  • Kirchhoff, G., 1859, Ueberdas Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, Journal für die reine und angewandte Mathematik, 56, 285–313.

    Article  MATH  Google Scholar 

  • Lamb, H., 1890, On the deformation of an elastic shell, Proceedings on London Mathematics Society, 21, 119–146.

    Article  MATH  Google Scholar 

  • Lembo, M., 2001, On the free shape of elastic rods, European Journal of Mechanics A/ Solids, 20, 469–483.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Levy, S. 1942, Large deflection theory for rectangular plate, Proceedings of the first Symposium on Applied Mathematics, 1, 197–210.

    Google Scholar 

  • Lin, C.C. and Mote, Jr., C.D., 1995, Equilibrium displacement and stress distribution in a two dimensional, axially moving web under transverse loading, ASME Journal of Applied Mechanics, 62, 772–779.

    Article  ADS  MATH  Google Scholar 

  • Lin, C.C. and Mote, C.D. Jr., 1996, Eigenvalue solutions predicting the wrinkling of rectangle webs under non-linearly distributed edge loading. Journal of Sound and Vibration, 197, 179–189.

    Article  ADS  Google Scholar 

  • Love, A.E.H., 1944, A Treatise on the Mathematical Theory of Elasticity, (4th ed.), Dover Publications, New York.

    MATH  Google Scholar 

  • Love, A.E.H., 1888, The small free vibrations and deformation of a thin elastic shell, Philosophical Transaction of Royal Society of London, 179 A, 491–456.

    ADS  Google Scholar 

  • Luo, A.C.J., 2000, An approximate theory for geometrically nonlinear thin plates, International Journal of Solids and Structures, 37, 7655–7670.

    Article  MATH  Google Scholar 

  • Luo, A.C.J., 2003, Resonant and stationary waves in axially traveling thin plates, IMeChE Part K, Journal of Multibody Dynamics, 217, 187–199.

    Article  Google Scholar 

  • Luo, A.C.J., 2005, Chaotic motion in resonant separatrix zones of periodically forced, axially traveling, thin plates, IMeChE Part K: Journal of Multi-body Dynamics, 219, 237–247.

    Article  Google Scholar 

  • Luo, A.C.J. and Hamidzadeh, H. R., 2004, Equilibrium and buckling stability for axially traveling plates, Communications in Nonlinear Science and Numerical Simulation, 9, 343–360.

    Article  ADS  MATH  Google Scholar 

  • Luo, A.C.J. and Han, R.P.S., 1999, Analytical predictions of chaos in a nonlinear rod, Journal of Sound and Vibration, 227, 523–544.

    Article  ADS  Google Scholar 

  • Luo, A.C.J., Han, R.P.S., Tyc, G., Modi, V.J. and Misra, A.K., 1996, Analytical vibration and resonant motion of a stretched, spinning, nonlinear tether, AIAA Journal of Guidance, Control and Dynamics, 19, 1162–1171.

    Article  MATH  Google Scholar 

  • Luo, A.C.J. and Mote, C.D. Jr., 2000a, Analytical solutions of equilibrium and existence for traveling, arbitrarily sagged, elastic cables, ASME Journal of Applied Mechanics, 67, 148–154.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Luo, A.C.J. and Mote, C.D. Jr., 2000b, Nonlinear vibration of rotating thin disks, ASME Journal of Vibration and Acoustics, 122, 376–383.

    Article  Google Scholar 

  • Luo, A.C.J. and Tan, C.A., 2001, Resonant and stationary waves in rotational disks, Nonlinear Dynamics, 24, 357–372.

    Article  Google Scholar 

  • Luo, A.C.J. and Wang, Y.F., 2002, On the rigid-body motion of traveling, sagged cables, Symposium on Dynamics, Acoustics and Simulations in 2002 ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, November 17–22, 2002.

    Google Scholar 

  • Luongo, A., Rega, G. and Vestroni, F., 1984, Planar non-linear free vibrations of an elastic cable, International Journal of Nonlinear Mechanics, 19, 39–52.

    Article  ADS  MATH  Google Scholar 

  • Luongo, A., Rega, G. and Vestroni, F., 1986, On nonlinear dynamics of planar shear indeformable beams, ASME Journal of Applied Mechanics, 53, 619–624.

    Article  ADS  MATH  Google Scholar 

  • Maewal, A., 1986, Chaos in a harmonically excited elastic beam, ASME Journal of Applied Mechanics, 53, 625–631.

    Article  MathSciNet  ADS  Google Scholar 

  • Marynowski, K., 2004, Nonlinear vibrations of an axially moving viscoelastic web with time-dependent tension, Chaos, Solitons and Fractals, 21, 481–490.

    Article  ADS  MATH  Google Scholar 

  • Marynowski, K., 2009, Dynamics of the Axially Moving Orthotropic Webs, Springer, Berlin.

    Google Scholar 

  • Marynowski, K. and Kapitaniak, T., 2007, Zener internal damping in modeling of axially moving viscoelastic beam with time-dependent tension, International Journal of Nonlinear Mechanics, 42, 118–131.

    Article  ADS  MATH  Google Scholar 

  • Medick, M.A., 1966, One dimensional theories of wave propagation and vibrations in elastic bars with rectangular cross-section, ASME Journal of Applied Mechanics, 33, 489–495.

    MathSciNet  Google Scholar 

  • Midlin, R.D. and Herrmann, G., 1952, A one-dimensional theory of compressional waves in an elastic rod, Proceedings of First U.S. National Congress of Applied Mechanics, 187–191, ASME, New York.

    Google Scholar 

  • Midlin, R.D. and McNiven, H.D., 1960, Axially symmetric waves in elastic rods, ASME Journal of Applied Mechanics, 27, 145–151.

    Google Scholar 

  • Nadler, B., 2008, Relative stiffness of elastic nets with Cartesian and polar underlying structure, International Journal of Engineering, 4, 1–9.

    Article  MathSciNet  Google Scholar 

  • Nadler, B., Papadopoulos, P. and Steigmann, D.J., 2006, Convexity of the strain-energy function in a two-scale model of ideal fabrics, Journal of Elasticity, 84, 223–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Naghdi, P.E., 1972, The Theory of Shells and Plates, Hundbuch der Physik, Vol. VIa/2, Springer, Berlin.

    Google Scholar 

  • Nayfeh, A.H., 1973, Nonlinear transverse vibration of beams with properties that vary along the length, Journal of the Acoustical Society of America, 53, 766–770.

    Article  ADS  Google Scholar 

  • Needham, J. 1954, Science and Civilisation in China, Vol. 8 (to date), Cambridge University Press, London.

    Google Scholar 

  • Novozhilov, V.V., 1941, General theory of stability of thin shells (Russian), Competes Rendus (Doklady) de l’Academie des Science de l’URSS, 32, 316–319.

    Google Scholar 

  • Novozhilov, V.V., 1948, Foundation of the Nonlinear Theory of Elasticity, Gostekhizdat: Moscow (Russian) (English translation by F. Bagemihl, H. Komm and W. Seidel, 1953, Graylock: Rochester).

    Google Scholar 

  • Nowinski, J.L.,1964, Nonlinear transverse vibrations of a spinning disk, ASME Journal of Applied Mechanics, 31, 72–78.

    Google Scholar 

  • Nowinski, J.L.,1981, Stability of nonlinear thermoelastic waves in membrane-like spinning disk, Journal of Thermal Science, 4, 1–11.

    Google Scholar 

  • O’Reilly, O.M., 1996, Steady motions of a drawn cable, ASME Journal of Applied Mechanics, 63, 180–189.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • O’Reilly, O.M. and Varadi, P., 1995, Elastic equilibria of translating cables, Acta Mechanica, 108, 189–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Pai, P.F. and Nayfeh, A.H., 1990, Three-dimensional nonlinear vibrations of composite beams-I: equation of motion, Nonlinear Dynamics, 1, 477–502.

    Article  Google Scholar 

  • Pai, P.F. and Nayfeh, A.H., 1992, A nonlinear composite beam theory, Nonlinear Dynamics, 3, 273–303.

    Article  Google Scholar 

  • Pai, P.F. and Nayfeh, A.H., 1994, A fully nonlinear theory of curved and twisted composite rotor blades accounting for warping and three-dimensional stress effects, International Journal of Solids and Structures, 31, 1309–1340.

    Article  MATH  Google Scholar 

  • Perkins, N.C., 1992, Modal interactions in the nonlinear response of elastic cables under parametric/external excitation, International Journal of Nonlinear Mechanics, 27, 233–250.

    Article  ADS  MATH  Google Scholar 

  • Perkins, N.C. and Mote, C.D., Jr., 1987, Three-dimensional vibration of traveling elastic cables, Journal of Sound and Vibration, 114, 325–340.

    Article  ADS  Google Scholar 

  • Perkins, N.C. and Mote, C.D., Jr., 1989, Theoretical and experimental stability of two translating cable equilibria, Journal of Sound and Vibration, 128, 397–410.

    Article  ADS  Google Scholar 

  • Pipkin, A.C., 1981, Plan traction problems for inextensible networks, Quarterly Journal of Mechanics and Applied Mathematics, 34, 415–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Pipkin, A.C., 1984, Equilibrium of Tchebychev nets, Archive for Rational Mechanics and Analysis, 85, 81–97.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pipkin, A.C., 1986, The relaxed energy density for isotropic elastic membranes, IMA Journal of Applied Mathematics, 36, 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Pugsley, A.G., 1949, On natural frequencies of suspension chain, Quarterly Journal of Mechanics and Applied Mathematics, 2, 412–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Rayleigh, (Lord), 1888, On the bending and vibration of thin elastic shells, especially of cylindrical shells, Proceedings on Royal Society of London A, 45, 105–123.

    Article  ADS  MATH  Google Scholar 

  • Reissner, E., 1944, On the theory of bending of elastic plates, Journal of Mathematics and Physics, 23, 184–191.

    MathSciNet  MATH  Google Scholar 

  • Reissner, E., 1957, Finite twisting and bending of thin rectangular elastic plates, ASME Journal of Applied Mechanics, 24, 391–396.

    MathSciNet  MATH  Google Scholar 

  • Reissner, E., 1972, On one-dimensional finite-strain beam theory: the plane problem, Journal of Applied Mathematics and Physics (ZAMP), 23, 759–804.

    Article  Google Scholar 

  • Reissner, E., 1973, On one-dimensional large-displacement finite-strain beam theory: the plane problem, Studies in Applied Mathematics, 52, 87–95.

    MATH  Google Scholar 

  • Rohrs, J.H., 1851, On the oscillations of a suspension cable, Transactions of the Cambridge Philosophical Society, 9, 379–398.

    ADS  Google Scholar 

  • Routh, E.J., 1884, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, (4th ed.), MacMillan and Co, London.

    Google Scholar 

  • Saxon, D.S. and Cahn, A.S., 1953, Modes of vibration of a suspended chain, Quarterly Journal of Mechanics and Applied Mathematics, 6, 273–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and Vu-Quoc, L., 1987, The role of nonlinear theories in transient dynamics analysis of flexible structures, Journal of Sound and Vibration, 119, 487–508.

    Article  MathSciNet  ADS  Google Scholar 

  • Simo, J.C. and Vu-Quoc, L., 1991, A geometrically-exact rod model incorporating shear and torsion-warping deformation, International Journal of Solids and Structures, 27, 371–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson, A., 1966, Determination of the inplane natural frequencies of multispan transmission lines by a transfer matrix method, Proceeding of the Institution of Electrical Engineers, 113, 870–878.

    Article  Google Scholar 

  • Simpson, A., 1972, On the oscillatory motions of translating elastic cables, Journal of Sound Vibration, 20, 177–189.

    Article  ADS  MATH  Google Scholar 

  • Steigenman, D.J. and Pipkin, A.C., 1989, Wrinkling of pressurized membranes, ASME Journal of Applied Mechanics, 56, 624–628.

    Article  ADS  Google Scholar 

  • Steigmann, D.J. and Pipkin, A.C., 1991, Equilibrium of elastic nets, Philosophical Transactions of the Royal Society of London, A335, 419–454.

    MathSciNet  ADS  Google Scholar 

  • Swigon, D., Coleman, B.D. and Tobias, I., 1998, The elastic rod model for DNA and its applications to the tertiary structure of DNA minicircles in mononucleosomes, Journal of Biophysics, 74, 251–2530.

    Google Scholar 

  • Tchebychev, P.L., 1878, Sur la coupe des vetements, Assoc. Franc. Pour. L’avancement des sci. Congres des Paris, 154–155.

    Google Scholar 

  • Tobias, I. and Olson, W.K., 1993, The effect of intrinsic curvature on supercoilingPrediction of elasticity theory, Biopolymers, 33, 639–646.

    Article  Google Scholar 

  • Todhunter, I. and Pearson, K., 1960, A History of the Theory of Elasticity and of the Strength of Materials, (Cambridge University press, 1886, 1893), (Reprinted), Dover, New York.

    MATH  Google Scholar 

  • Toupin, R.A., 1964, Theories of elasticity with couple-stress, Archives for Rational Mechanics and Analysis, 17, 85–112.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Triantafyllou, M.S., 1985, The dynamics of translating cables, Journal of Sound and Vibration, 103, 171–182.

    Article  ADS  Google Scholar 

  • Truesdell, C, 1960, The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788. L. Euleri Opera Omnia 11, Füssli, Zürich.

    Google Scholar 

  • Truesdell, C. and Toupin, R., 1960, The Classic Field Theories, Handbuch de Physik, Vol.3/1 (edited by Flügge), Springer, Berlin.

    Google Scholar 

  • Tsuru, H.,1987, Equilibrium shape and vibrations of thin elastic rods, Journal of Physical Society of Japan, 56, 230–2324.

    Google Scholar 

  • Verma, G.R., 1972, Nonlinear vibrations of beams and membranes, Studies in Applied Mathematics, LII, 805–814.

    Google Scholar 

  • Volterra, E., 1955, Equations of motion for curved elastic bars by the use of the “method of internal constraints”, Ingeniear-Archiv, 23, 402–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Volterra, E., 1956, Equations of motion for curved and twisted elastic bars deduced by the use of the “method of internal constraints”, Ingeniear-Archiv, 24, 392–400.

    Article  MathSciNet  MATH  Google Scholar 

  • Volterra, E., 1961, Second approximation of the method of internal constraints and its applications, International Journal of Mechanical Science, 3, 47–67.

    Article  Google Scholar 

  • von Karman, Th., 1910, Festigkeitsprobleme im mashinenbau, Encyklopadie der Mathematischen Wissenschaften, Teubner, Leipzig, 4, 348–352.

    Google Scholar 

  • von Karman, Th. and Tsien, H.S., 1939, Buckling of spherical shells by external pressure, Journal of the Aeronautical Sciences, 7, 43–50

    MATH  Google Scholar 

  • von Karman, Th. and Tsien, H.S., 1941, The buckling of thin cylindrical shells under axial compression, Journal of the Aeronautical Sciences, 8, 303–312.

    MATH  Google Scholar 

  • Vu-Quoc, L. and Deng, H., 1995, Galerkin projection for geometrically-exact sandwich beams allows for ply drop-off, ASME Journal of Applied Mechanics, 62, 479–488.

    Article  ADS  MATH  Google Scholar 

  • Vu-Quoc, L. and Deng, H., 1997, Dynamics of geometrically-exact sandwich beams: computational aspects, Computer Methods in Applied Mechanics and Engineering, 146, 135–172.

    Article  ADS  MATH  Google Scholar 

  • Vu-Quoc, L. Deng, H. and Ebcioglu, I.K., 1996, Sandwich beams: A geometrically-exact formulation, Journal of Nonlinear Science, 6, 239–270.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vu-Quoc, L. and Ebcioglu, I.K., 1995, Dynamics formulation for geometrically-exact sandwich beams and 1-D plates, ASME Journal of Applied Mechanics, 62, 756–763.

    Article  ADS  MATH  Google Scholar 

  • Vu-Quoc, L. and Ebcioglu, I.K., 1996, General multilayer geometrically-exact beams/1-D plate with piecewise linear section deformation, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 76, 756–763.

    MathSciNet  Google Scholar 

  • Waewal A., 1983, A set of strain-displacement relations in nonlinear rods and shells, Journal of Structural Mechanics, 10, 393–401.

    Google Scholar 

  • Wang, F.Y., 1990, Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body-I: plate problems, International Journal of Solids and Structures, 26, 455–470.

    Article  MATH  Google Scholar 

  • Wang, M.-P. and Steigmann, D.J., 1997, Small oscillations of finitely deformed elastic networks, Journal of Sound and Vibration, 202, 619–631.

    Article  ADS  Google Scholar 

  • Wang, Y.F. and Luo, A.C.J., 2004, Dynamics of traveling, inextensible cables, Communications in Nonlinear Science and Numerical Simulation, 9, 531–542.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Watson, G.N., 1966, Theory of Bessel Function (2nd ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Wempner, G., 1973, Mechanics of Solids with Application to Thin Body, McGraw-Hill, New York.

    Google Scholar 

  • Whitman, A.B. and DeSilva, C.N., 1969, A dynamical theory of elastic directed curves, Journal of Applied Mathematics and Physics (ZAMP), 20, 200–212.

    Article  MATH  Google Scholar 

  • Whitman, A.B. and DeSilva, C.N., 1970, Dynamics and stability of elastic Cosserat curves, International Journal of Solids and Structures, 6, 411–422.

    Article  MATH  Google Scholar 

  • Whitman, A.B. and DeSilva, C.N., 1972, Stability in a linear theory of elastic rods, Acta Mechanica, 15, 295–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Whitman, A.B. and DeSilva, C.N., 1974, An exact solution in a nonlinear theory of rods, Journal of Elasticity, 4, 265–280.

    Article  MATH  Google Scholar 

  • Whittacker, E.T., 1970, Analytical Dynamics (4th ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Yu, P., Wong, P.S. and Kaempffer, F., 1995, Tension of conductor under concentrated loads, ASME Journal of Applied Mechanics, 62, 802–809.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, A.C.J. (2010). Introduction. In: Nonlinear Deformable-body Dynamics. Nonlinear Physical Science, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12136-4_1

Download citation

Publish with us

Policies and ethics