Skip to main content

A Framework for Enabling Fault Tolerance in Reconfigurable Architectures

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5992))

Included in the following conference series:

Abstract

Fault tolerance is a pre-request not only for safety critical systems, but almost for the majority of applications. However, the additional hardware elements impose performance degradation. In this paper we propose a software-supported methodology for protecting reconfigurable architectures against Single Event Upsets (SEUs), even if the target device is not aware about this feature. This methodology initially predicts areas of the target architecture where faults are most possible to occur and then inserts selectively redundancy only there. Based on experimental results, we show that our proposed selectively fault-tolerance results to a better tradeoff between desired level of reliability and area, delay, power overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lach, J., Mangione-Smith, W., Potkonjak, M.: Efficiently Supporting Fault-Tolerance in FPGAs. In: Int. Symp. on FPGAs, pp. 105–115 (1998)

    Google Scholar 

  2. Nikolic, K., Sadek, A., Forshaw, M.: Fault-tolerant techniques for nanocomputers. Nanotechnology 13, 357–362 (2002)

    Article  Google Scholar 

  3. Bhaduri, D., Shukla, S.: NANOPRISM: A Tool for Evaluating Granularity vs. In: Reliability Trade-offs in Nano Architectures. GLS-VLSI, pp. 109–112 (2004)

    Google Scholar 

  4. Kastensmidt, F., Carro, L., Reis, R.: Fault-Tolerance Techniques for SRAM-Based FPGAs. Springer, Heidelberg (2006)

    Google Scholar 

  5. Pratt, B., et al.: Improving FPGA Design Robustness with Partial TMR. In: International Reliability Physics Symposium, pp. 226–232 (2006)

    Google Scholar 

  6. Sterpone, L., et al.: On the design of tunable fault tolerant circuits on SRAM-based FPGAs for safety critical applications. In: DATE Conference, pp. 336–341 (2008)

    Google Scholar 

  7. Yang, S.: Logic Synthesis and Optimization Benchmarks, Tech. Report (1991)

    Google Scholar 

  8. Xilinx TMR Tool, http://www.xilinx.com/quickstart/tmrq.htm

  9. Ziegler, J., et al.: IBM Experiments in Soft Fails in Computer Electronics (1978-1994). IBM Journal of Research and Development 40(1), 3–18 (1996)

    Article  Google Scholar 

  10. 2D MEANDER Framework, http://proteas.microlab.ntua.gr

  11. Colinge, J.: Silicon-on-Insulator Technology: Overview and Device Physics. In: IEEE Nuclear Space Radiation Effects Conference 2001 (2001)

    Google Scholar 

  12. Yu, J., et al.: Defect Tolerant FPGA Switch Block and Connection Block with Fine Grain Redundancy for Yield Enhancement. In: FPGA, pp. 255–262 (2005)

    Google Scholar 

  13. Jain, R., Mukherjee, A., Paul, K.: Defect Aware Design Paradigm for Reconfigurable Architectures. In: Computer Society Annual Symposium on VLSI, pp. 91–96 (2006)

    Google Scholar 

  14. Doumar, A., Ito, H.: Defect and Fault tolerance FPGAs by shifting the configuration data. In: IEEE Symposium on Defect and Fault-tolerance, pp. 377–385 (1999)

    Google Scholar 

  15. Camregher, N., et al.: Analysis of Yield Loss due to Random Photolithographic Defects in the Interconnect Structure of FPGAs. In: FPGA, pp. 138–148 (2005)

    Google Scholar 

  16. Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies, pp. 43–98 (1956)

    Google Scholar 

  17. Black, J.: Electromigration - A Brief Survey and Some Recent Results. IEEE Transaction on Electron Devices ED-16, 338–347 (1974)

    Google Scholar 

  18. Siozios, K., Soudris, D.: A Power-Aware Placement and Routing Algorithm Targeting 3D FPGAs. Journal of Low-Power Electronics 4(3), 275–289 (2008)

    Article  Google Scholar 

  19. Soudris, D., et al.: AMDREL: A Novel Low-Energy FPGA Architecture and Supporting CAD Tool Design Flow. In: Fine and Coarse-Grain Reconfigurable Systems, pp. 152–180 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siozios, K., Soudris, D., Pnevmatikatos, D. (2010). A Framework for Enabling Fault Tolerance in Reconfigurable Architectures. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2010. Lecture Notes in Computer Science, vol 5992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12133-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12133-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12132-6

  • Online ISBN: 978-3-642-12133-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics