Skip to main content

LPS-GNSS orientations and vertical deflections

  • Chapter
  • First Online:
Algebraic Geodesy and Geoinformatics

Abstract

Since the advent of the Global Navigation Satellite System (GNSS) , in particular the Global Positioning System (GPS), many fields within geosciences, such as geodesy, geoinformatics, geophysics, hydrology etc., have undergone tremendous changes. GPS satellites have in fact revolutionized operations in these fields and the entire world in ways that its inventors never imagined. The initial goal of GPS satellites was to provide the capability for the US military to position themselves accurately from space. This way, they would be able to know the positions of their submarines without necessarily relying on fixed ground stations that were liable to enemy attack. Slowly, but surely, the civilian community, led by geodesists, began to devise methods of exploiting the potential of this system. The initial focus of research was on the improvement of positioning accuracies since civilians only have access to the so called coarse acquisition or C/A-code of the GPS signal. This code is less precise when compared to the P-code used by the US military and its allies. The other source of error in GPS positioning was the Selective Availability (SA) , i.e., intentional degradation of the GPS signal by the US military that would lead to a positioning error of ±100 m. However, in May 2000, the then president of the United States Bill Clinton, officially discontinued this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007JB004949.

    Google Scholar 

  2. Awange JL (2003a): Partial procrustes solution of the threedimensional orientation problem from GPS/LPS observations. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy - the Challenge of the 3rd Millennium. Springer, Heidelberg pp.277–286

    Google Scholar 

  3. Awange JL (2010) GNSS environmental monitoring. Springer Verlag. Berlin

    Google Scholar 

  4. Balodimos DD, Korakitis R, Lambrou E, Pantazis G. (2003) Fast and accurate determination of astronomical coordinates ΘΛ and azimuth using total station and GPS receiver. Survey Review 37: 269–275

    Google Scholar 

  5. Dach R (2000) Einfluß von Auflasteffekten auf Präzise GPS-Messungen, DGK, Reihe C, Heft Nr. 519

    Google Scholar 

  6. Featherstone WE, Lichti DD (2008) Fitting gravimetric geoid models to vertical deflections. Journal of Geodesy 83:583-589, DOI: 10.1007/s00190-008-0263-4

    Article  Google Scholar 

  7. Grafarend EW (1981) Die Beobachtungsgleichungen der dreidimensionalen Geodäsie im Geometrie- und Schwereraum. Ein Beitrag zur operationellen Geodäsie. Zeitschrift für Vermessungswesen 106: 411–429

    Google Scholar 

  8. Grafarend EW (1975) Three dimensional Geodesy 1. The holonomity problem. Zeitschrift für Vermessungswesen 100: 269–280

    Google Scholar 

  9. Grafarend EW (1988) Azimuth transport and the problem of orientation within geodetic traverses and geodetic networks. Vermessung, Photogrammetrie, Kulturtechnik 86: 132–150

    Google Scholar 

  10. Grafarend EW (1991) Application of Geodesy to Engineering. In: Eds. Linkwitz K, Eisele V, Mönicke HJ, IAG-Symposium No. 108, Springer, Berlin-Heidelberg-New York

    Google Scholar 

  11. Grafarend EW, Awange JL (2000) Determination of vertical deflections by GPS/LPS measurements. Zeitschrift für Vermessungswesen 125: 279–288

    Google Scholar 

  12. Grafarend EW, Keller W (1995) Setup of observational functionals in gravity space as well as in geometry space. Manuscripta Geodetica 20: 301–325

    Google Scholar 

  13. Grafarend EW, Richter B (1977) Generalized Laplace condition. Bull. Geod. 51: 287–293

    Article  Google Scholar 

  14. Grafarend EW, Lohse P, Schaffrin B (1989) Dreidimensionaler Rückwärtsschnitt. Zeitschrift für Vermessungswesen 114: 61–67,127–137,172–175,225–234,278–287

    Google Scholar 

  15. Grewal MS, Weill LR, Andrews AP (2001) Global Positioning Systems, Inertial Navigation and Integration, John Wiley & Sons, New York

    Google Scholar 

  16. Hanselman D, Littlefield B (1997) The student edition of Matlab. Prentice-Hall, New Jersey

    Google Scholar 

  17. Hirt C, Bürki B (2002) The Digital Zenith Camera - A New High-Precision and Economic Astrogeodetic Observation System for Real-Time Measurement of Deflections of the Vertical. Proc. of the 3rd Meeting of the International Gravity and Geoid Commission of the International Association of Geodesy, Thessaloniki, Greece (ed. I. Tziavos): 161-166.

    Google Scholar 

  18. Hirt C, Seeber G (2002) Astrogeodätische Lotabweichungsbestimmung mit dem digitalen Zenitkamerasystem TZK2-D. Zeitschrift für Vermessungswesen 127: 388-396.

    Google Scholar 

  19. Hirt C (2003) The Digital Zenith Camera TZK2-D - A Modern High Precision Geodetic Instrument for Automatic Geographic Positioning in Real-Time. Astronomical Data Analysis Software and Systems XII, Astronomical Society of the Pacific Conference Series Vol. 295, San Francisco: 155-159.

    Google Scholar 

  20. Hirt C, Seeber G (2008): Accuracy Analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D. Journal of Geodesy 82: 231-248. DOI: 10.1007/s00190-007-0184-7

    Article  Google Scholar 

  21. Hirt C, Bürki B, Somieski A, Seeber G (2009). Modern Determination of vertical deflections using digital zenith cameras. Journal Surveying Engineering, accepted.

    Google Scholar 

  22. Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global Positioning System: Theory and practice, 5th Edition, Springer, Wien

    Google Scholar 

  23. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS Global Navigation Satellite System: GPS, GLONASS; Galileo and more, Springer, Wien

    Google Scholar 

  24. Kurz S (1996) Positionierung mittels Rückwartsschnitt in drei Dimensionen. Studienarbeit, Geodätisches Institut, University of Stuttgart, Stuttgart

    Google Scholar 

  25. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18

    Google Scholar 

  26. Shut GH (1958/59) Construction of orthogonal matrices and their application in analytical Photogrammetrie. Photogrammetria XV: 149–162

    Google Scholar 

  27. Leick A (2003) GPS satellite surveying, 3rd Edition, John Wiley &, New York

    Google Scholar 

  28. Mathes A (1998) GPS und GLONASS als Teil eines hybrid Meßsystems in der Geodäsie am Beispiel des Systems HIGGINS, Dissertationen, DGK, Reihe C, Nr. 500

    Google Scholar 

  29. Richter B (1986) Entwurf eines nichtrelativistischen geodätisch-astronomischen Bezugssystems, DGK, Reihe C, Heft Nr. 322

    Google Scholar 

  30. (1995) Satellitengeodätische Positionierung in der relativistischen Raum-Zeit, DGK, Reihe C, Heft Nr.449

    Google Scholar 

  31. Strang G, Borre K (1997) Linear Algebra, Geodesy and GPS, Wellesley Cambridge Press, Wellesley

    Google Scholar 

  32. Thompson EH (1959a) A method for the construction of orthogonal matrices. Photogrammetria III: 55–59

    Google Scholar 

  33. Thompson EH (1959b) An exact linear solution of the absolute orientation. Photogrammetria XV: 163–179

    Google Scholar 

  34. Voigt C, Denker H, Hirt C (2009) Regional Astrogeodetic Validation of GPS/Levelling Data and Quasigeoid Models. In: M.G. Sideris (ed.), Observing our Changing Earth, International Association of Geodesy Symposia 133, pp. 413-420.

    Google Scholar 

  35. Xu G (2003) GPS. Theory, algorithms and applications, Springer, Berlin Heidelberg

    Google Scholar 

  36. Zhang S (1994) Anwendung der Drehmatrix in Hamilton normierten Quaternionenen bei der Bündelblock Ausgleichung. Zeitschrift für Vermessungswesen 119: 203-211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Awange .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Grafarend, E.W., Paláncz, B., Zaletnyik, P. (2010). LPS-GNSS orientations and vertical deflections. In: Algebraic Geodesy and Geoinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12124-1_10

Download citation

Publish with us

Policies and ethics