Advertisement

Aquiba: An Energy-Efficient Mobile Sensing System for Collaborative Human Probes

  • Niwat Thepvilojanapong
  • Shin’ichi Konomi
  • Jun’ichi Yura
  • Takeshi Iwamoto
  • Susanna Pirttikangas
  • Yasuyuki Ishida
  • Masayuki Iwai
  • Yoshito Tobe
  • Hiroyuki Yokoyama
  • Jin Nakazawa
  • Hideyuki Tokuda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5982)

Abstract

Portable sensory devices carried by humans—which are referred to as Human Probes—facilitate easy-to-use sensing and monitoring of urban areas. In this demonstration, we developed a prototype of Aquiba sensing system from off-the-shelf mobile phone. Aquiba involves collaborative sensing that helps in achieving high-fidelity sensing while minimizing overall energy consumption. We validated the benefit of collaborative sensing through field experiments.

Keywords

Mobile Phone Neighbor Information Human Probe Entire Experimental Period Neighbor Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc on-demand distance vector (AODV) routing. RFC 3561, IETF (July 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Niwat Thepvilojanapong
    • 1
    • 2
  • Shin’ichi Konomi
    • 1
    • 2
  • Jun’ichi Yura
    • 3
  • Takeshi Iwamoto
    • 4
  • Susanna Pirttikangas
    • 5
  • Yasuyuki Ishida
    • 1
  • Masayuki Iwai
    • 6
  • Yoshito Tobe
    • 1
    • 2
  • Hiroyuki Yokoyama
    • 7
  • Jin Nakazawa
    • 3
  • Hideyuki Tokuda
    • 3
  1. 1.Tokyo Denki UniversityJapan
  2. 2.CREST, JSTJapan
  3. 3.Keio UniversityJapan
  4. 4.Toyama Prefectural UniversityJapan
  5. 5.University of OuluFinland
  6. 6.University of TokyoJapan
  7. 7.KDDI R&D LaboratoriesJapan

Personalised recommendations