NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories

  • Gook-Pil Roh
  • Seung-won Hwang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5982)


With the advent of ubiquitous computing, we can easily acquire the locations of moving objects. This paper studies clustering problems for trajectory data that is constrained by the road network. While many trajectory clustering algorithms have been proposed, they do not consider the spatial proximity of objects across the road network. For this kind of data, we propose a new distance measure that reflects the spatial proximity of vehicle trajectories on the road network, and an efficient clustering method that reduces the number of distance computations during the clustering process. Experimental results demonstrate that our proposed method correctly identifies clusters using real-life trajectory data yet reduces the distance computations by up to 80% against the baseline algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Gps route sharing,
  3. 3.
    Gps track route exchange,
  4. 4.
    Bereg, S., Buchin, K., Buchin, M., Gavrilova, M.L., Zhu, B.: Voronoi diagram of polygonal chains under the discrete fréchet distance. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 352–362. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Biliotti, D., Antonini, G., Thiran, J.P.: Multi-layer hierarchical clustering of pedestrian trajectories for automatic counting of people in video sequences. In: Proc. WACV/MOTION, pp. 50–57 (2005)Google Scholar
  6. 6.
    Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc. VLDB, pp. 853–864 (2005)Google Scholar
  7. 7.
    Cai, Y., Ng, R.T.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: Proc. SIGMOD, pp. 599–610 (2004)Google Scholar
  8. 8.
    Cao, H., Wolfson, O.: Nonmaterialized motion information in transport networks. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Proc. VLDB, pp. 792–803 (2004)Google Scholar
  10. 10.
    Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proc. SIGMOD, pp. 491–502 (2005)Google Scholar
  11. 11.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 224–227 (1979)CrossRefGoogle Scholar
  12. 12.
    Dubuisson, M.P., Jain, A.: A modified hausdorff distance for object matching. In: Proc. ICPR, pp. 566–568 (1994)Google Scholar
  13. 13.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. KDD, pp. 226–231 (1996)Google Scholar
  14. 14.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proc. KDD, pp. 63–72 (1999)Google Scholar
  15. 15.
    Gudmundsson, J., van Kreveld, M.J., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal data sets. In: GIS, pp. 250–257 (2004)Google Scholar
  16. 16.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Int. J. Intell. Inf. Syst. 17(2-3), 107–145 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. PVLDB 1(1), 1068–1080 (2008)Google Scholar
  18. 18.
    Junejo, I.N., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: Proc. ICPR, pp. 716–719 (2004)Google Scholar
  19. 19.
    Koivistoinen, H., Ruuska, M., Elomaa, T.: A voronoi diagram approach to autonomous clustering. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 149–160. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proc. SIGMOD, pp. 593–604 (2007)Google Scholar
  21. 21.
    Lee, S.L., Chun, S.J., Kim, D.H., Lee, J.H., Chung, C.W.: Similarity search for multidimensional data sequences. In: Proc. ICDE, pp. 599–608 (2000)Google Scholar
  22. 22.
    Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity based on location history. In: Proc. GIS, pp. 1–10 (2008)Google Scholar
  23. 23.
    Lin, B., Su, J.: One way distance: For shape based similarity search of moving object trajectories. Geoinformatica 12(2), 117–142 (2008)CrossRefGoogle Scholar
  24. 24.
    Lou, J., Liu, Q., Tan, T., Hu, W.: Semantic interpretation of object activities in a surveillance system. In: Proc. ICPR, pp. 777–780 (2002)Google Scholar
  25. 25.
    Roh, G., Hwang, S.: Nncluster: An efficient clustering algorithm for road network trajectories,
  26. 26.
    Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: Proc. ICDE, pp. 673–684 (2002)Google Scholar
  27. 27.
    Xu, R., Wunsch, D.I.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  28. 28.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. In: Proc. WWW, pp. 791–800 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gook-Pil Roh
    • 1
  • Seung-won Hwang
    • 1
  1. 1.Department of Computer Science & EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations