Advertisement

Peer-to-Peer Similarity Search Based on M-Tree Indexing

  • Akrivi Vlachou
  • Christos Doulkeridis
  • Yannis Kotidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5982)

Abstract

Similarity search in metric spaces has several important applications both in centralized and distributed environments. In centralized applications, such as similarity-based image retrieval, usually a server indexes its data with a state-of-the-art centralized metric indexing technique, such as the M-Tree. In this paper, we propose a framework for distributed similarity search, where each participating peer stores its own data autonomously, under the assumption that data is indexed locally by peers using M-Trees. In order to support scalability and efficiency of search, we adopt a super-peer architecture, where super-peers are responsible for query routing. We propose the construction of metric routing indices suitable for distributed similarity search in metric spaces. We study the performance of the proposed framework using both synthetic and real data.

Keywords

Query Processing Similarity Search Range Query Representative Object Parent Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Computing Surveys (CSUR) 33(3), 273–321 (2001)CrossRefGoogle Scholar
  2. 2.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proc. of VLDB, pp. 426–435 (1997)Google Scholar
  3. 3.
    Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Peer-to-peer similarity search in metric spaces. In: Proc. of VLDB, pp. 986–997 (2007)Google Scholar
  4. 4.
    Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Efficient range query processing in metric spaces over highly distributed data. Distributed and Parallel Databases 26(2-3), 155–180 (2009)CrossRefGoogle Scholar
  5. 5.
    Falchi, F., Gennaro, C., Zezula, P.: A content-addressable network for similarity search in metric spaces. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 98–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM Transactions on Database Systems (TODS) 28(4), 517–580 (2003)CrossRefGoogle Scholar
  7. 7.
    Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive B + -tree based indexing method for nearest neighbor search. ACM Transactions on Database Systems (TODS) 30(2), 364–397 (2005)CrossRefGoogle Scholar
  8. 8.
    Novak, D., Zezula, P.: M-Chord: a scalable distributed similarity search structure. In: Proc. of InfoScale, p. 19 (2006)Google Scholar
  9. 9.
    Vlachou, A., Doulkeridis, C., Mavroeidis, D., Vazirgiannis, M.: Designing a peer-to-peer architecture for distributed image retrieval. In: Boujemaa, N., Detyniecki, M., Nürnberger, A. (eds.) AMR 2007. LNCS, vol. 4918, pp. 182–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Akrivi Vlachou
    • 1
  • Christos Doulkeridis
    • 1
  • Yannis Kotidis
    • 2
  1. 1.Dept. of Computer and Information ScienceNorwegian University of Science and Technology 
  2. 2.Dept. of InformaticsAthens University of Economics and Business 

Personalised recommendations