Constraint-Aware Complex Event Pattern Detection over Streams

  • Ming Li
  • Murali Mani
  • Elke A. Rundensteiner
  • Tao Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5982)


In this paper, we propose a framework for constraint-aware pattern detection over event streams. Given the constraint of the input streams, our proposed framework on the fly checks the query satisfiability / unsatisfiability using a lightweight reasoning mechanism. Based on the constraint specified in the input stream, we are able to adjust the processing strategy dynamically, by producing early feedbacks, releasing unnecessary system resources and terminating corresponding pattern monitor, thus effectively decreasing the resource consumption and expediting the system response on certain situations. Our experimental study illustrates the significant performance improvement achieved by the constraint-aware pattern detection framework with little overhead.


Event Pattern Pattern Detection Pattern Query Event Stream Execution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gartner Inc.,
  2. 2.
    Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data stream management. VLDB Journal 12(2), 120–139 (2003)CrossRefGoogle Scholar
  3. 3.
    Akdere, M., Cetintemel, U., Tatbul, N.: Plan-based complex event detection across distributed sources. PVLDB 1(1), 66–77 (2008)Google Scholar
  4. 4.
    Babcock, B., Babu, S., Motwani, R., Widom, J.: Models and issues in data streams. In: PODS, June 2002, pp. 1–16 (2002)Google Scholar
  5. 5.
    Babu, S., Widom, J.: Continuous queries over data streams. In: ACM SIGMOD (September 2001)Google Scholar
  6. 6.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: TelegraphCQ: Continuous dataflow processing for an uncertain world. In: CIDR, pp. 269–280 (2003)Google Scholar
  7. 7.
    Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: A general purpose event monitoring system. In: CIDR, pp. 412–422 (2007)Google Scholar
  8. 8.
    Ding, L., Chen, S., Rundensteiner, E.A., Tatemura, J., Hsiung, W.-P., Candan, K.S.: Runtime semantic query optimization for event stream processing. In: ICDE, pp. 676–685 (2008)Google Scholar
  9. 9.
    Etzion, O.: Semantic approach to event processing. In: DEBS, p. 139 (2007)Google Scholar
  10. 10.
    Harris, C., Gass, S.: Encyclopedia of MS/OR (2000)Google Scholar
  11. 11.
    Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling of event processors and buffer minimization for queries on structured data streams. In: VLDB, pp. 228–239 (2004)Google Scholar
  12. 12.
    Kozen, D.: Automata and computability. W. H. Freeman and Company, New York (2003)Google Scholar
  13. 13.
    Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: E-tec: A constraint-aware query engine for pattern detection over event streams. In: ICSC, pp. 565–566 (2009)Google Scholar
  14. 14.
    Liu, M., Li, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.T.: Sequence pattern query processing over out-of-order event streams. In: ICDE, pp. 784–795 (2009)Google Scholar
  15. 15.
    Schmidt, A., Wass, F.: XMark: a benchmark for XML data management. In: VLDB, pp. 974–985 (2002)Google Scholar
  16. 16.
    Su, H., Rundensteiner, E.A., Mani, M.: Semantic Query Optimization for XQuery over XML Streams. In: VLDB, pp. 1293–1296 (2005)Google Scholar
  17. 17.
    Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: SIGMOD, pp. 407–418 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ming Li
    • 1
    • 3
  • Murali Mani
    • 1
  • Elke A. Rundensteiner
    • 1
  • Tao Lin
    • 2
  1. 1.C.S. Dept.Worcester Polytechnic Inst.WorcesterUSA
  2. 2.Research and DevelopmentAmitive Inc.Redwood CityUSA
  3. 3.Silicon Valley LaboratoryIBM Corp.San JoseUSA

Personalised recommendations