\(\textrm{B}^s\)-tree: A Self-tuning Index of Moving Objects

  • Nan Chen
  • Lidan Shou
  • Gang Chen
  • Ke Chen
  • Yunjun Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5982)


Self-tuning database is a general paradigm for the future development of database systems. However, in moving object database, a vibrant and dynamic research area of the database community, the need for self-tuning has so far been overlooked. None of the existing spatio-temporal indexes can maintain high performance if the proportion of query and update operations varies significantly in the applications. We study the self-tuning indexing techniques which balance the query and update performances for optimal overall performance in moving object databases. In this paper, we propose a self-tuning framework which relies on a novel moving object index named \(\textrm{B}^s\)-tree. This framework is able to optimize its own overall performance by adapting to the workload online without interrupting the indexing service. We present various algorithms for the \(\textrm{B}^s\)-tree and the tuning techniques. Our extensive experiments show that the framework is effective, and the \(\textrm{B}^s\)-tree outperforms the existing indexes under different circumstances.


spatio-temporal database moving object index self-tuning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. In: SIGMOD Conference, Atlantic City, NJ, May 1990, pp. 322–331 (1990)Google Scholar
  2. 2.
    Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest Neighbor and Reverse Nearest Neighbor Queries for Moving Objects. VLDB J. 15(3), 229–249 (2006)CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server. In: VLDB, Athens, Greece, August 1997, pp. 146–155 (1997)Google Scholar
  4. 4.
    Chen, N., Shou, L.-D., Chen, G., Dong, J.-X.: Adaptive Indexing of Moving Objects with Highly Variable Update Frequencies. Journal of Computer Science and Technology (JCST) 23(6), 998–1014 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: S2TB-Tree: A Self-Tunable Spatio-Temporal B+-Tree Index for Moving Objects. In: SIGMOD Conference, Vancouver, BC, Canada, June 2008, pp. 29–42 (2008)Google Scholar
  6. 6.
    Guo, S., Huang, Z., Jagadish, H.V., Ooi, B.C., Zhang, Z.: Relaxed Space Bounding for Moving Objects: A Case for the Buddy Tree. SIGMOD Record (SIGMOD) 35(4), 24–29 (2006)CrossRefGoogle Scholar
  7. 7.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conference, Boston, Massachusetts, June 1984, pp. 47–57 (1984)Google Scholar
  8. 8.
    Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In: VLDB, Toronto, Ontario, Canada, August 2004, pp. 768–779 (2004)Google Scholar
  9. 9.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of Continuously Moving Objects. In: SIGMOD Conference, Dallas, Texas, USA, May 2000, pp. 331–342 (2000)Google Scholar
  10. 10.
    Srinivasan, V., Michael, Carey, J.: Performance of B-Tree Concurrency Algorithmss. In: SIGMOD Conference, Denver, Colorado, May 1991, pp. 416–425 (1991)Google Scholar
  11. 11.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries. In: VLDB, Berlin, Germany, September 2003, pp. 790–801 (2003)Google Scholar
  12. 12.
    Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Trans. Knowl. Data Eng. (TKDE) 16(10), 1169–1184 (2004)CrossRefGoogle Scholar
  13. 13.
    Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: indexing moving objects by space filling curves in the dual space. VLDB J. (VLDB) 17(3), 379–400 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nan Chen
    • 1
  • Lidan Shou
    • 1
  • Gang Chen
    • 1
  • Ke Chen
    • 1
  • Yunjun Gao
    • 1
  1. 1.College of Computer ScienceZhejiang UniversityChina

Personalised recommendations