Skip to main content

A Fusion Approach for Multi-criteria Evaluation

  • Chapter
  • 772 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 283))

Abstract

Multi-Criteria Decision Making (MCDM) methods are famous approaches to structure information and decision evaluation in problems with multiple, conflicting goals. This paper proposes a fusion approach for solving the alternative selection problem. It has three advantages described as below: (1) it uses the entropy method and the ME-OWA operator to get the value of the attribute weight; (2) it uses Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to find out the critical alternative; (3) it can deal with the dynamical weighting problem more rationally and flexibly according to the situational parameter from the user’s viewpoint. In experiments and comparisons, a case study of comparing three houses is adopted. Finally, the comparison results show that the proposed method has better performance than other methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, B.S.: On the properties of OWA operator weights functions with constant level of orness. IEEE Transactions on Fuzzy System 14(4) (2006)

    Google Scholar 

  2. Bandyopadhyay, S., Maulik, U.: An evolutionary technique based on K-Means algorithm for optimal clustering in RN. Information Sciences 146, 221–237 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, S.M., Yu, C.A.: New method to generate fuzzy rules from training instances for handling classification problems. Cybernetics and Systems: An International Journal 34(3), 217–232 (2003)

    Article  MATH  Google Scholar 

  4. Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, pp. 74–81 (2001)

    Google Scholar 

  5. Dunham, M.H.: Data mining introductory and advanced topics. Pearson Education, Inc., London (2002)

    Google Scholar 

  6. Fuller, R., Majlender, P.: An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets and Systems 124, 53–57 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  8. Hong, T.P., Chen, J.B.: Finding relevant attributes and membership functions. Fuzzy Sets ond Systems 103(3), 389–404 (1999)

    Article  Google Scholar 

  9. Hong, T.P., Lee, C.Y.: Induction of fuzzy rules and membership functions from training examples. Fuzzy Sets and Systems 84(1), 33–47 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jain, A.K., Chandrasekaran, B.: Dimensionality and Sample Size Considerations in Pattern Recognition Practice. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics 2, pp. 835–855. North-Holland, Amsterdam (1982)

    Google Scholar 

  11. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  12. Liu, H., Motoda, H., Yu, L.: A selective sampling approach to active feature selection. Artificial Intelligence 159(1-2), 49–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, X.: Three methods for generating monotonic OWA operator weights with given orness level. Journal of Southeast University 20(3) (2004)

    Google Scholar 

  14. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  15. McClave, J.T., Benson, P.G., Sincich, T.: Statistics for business and economics, 9th edn. Prentice Hall, Englewood Cliffs (2005)

    Google Scholar 

  16. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16, 149–169 (1999)

    Article  Google Scholar 

  17. O’Hagan, M.: Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. In: Proc. 22nd Annu. IEEE Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA, pp. 681–689 (1988)

    Google Scholar 

  18. Peña-Reyes, C.A., Sipper, M.: A fuzzy genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17, 131–155 (2000)

    Article  Google Scholar 

  19. Setiono, R.: Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18, 205–219 (2000)

    Article  Google Scholar 

  20. Shannon, C.E., Weaver, W.: The mathematical theory of communication. The University of Illinois Press, Urbana (1947)

    Google Scholar 

  21. Tsai, F.M., Chen, S.M.: A new method for constructing membership functions and generating fuzzy mles for fuzzy classification systems. In: Proceedings of 2002 Tenth National Conference on Fuzzy Theory and its Application, Hsinchu. Taiwan Republic of China (2002)

    Google Scholar 

  22. Wang, T.C., Lee, H.D., Chang, M.C.S.: A fuzzy TOPSIS approach with entropy measure for decision-making problem. In: IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, December 2007, pp. 124–128 (2007)

    Google Scholar 

  23. Wu, T.P., Chen, S.M.: A new method for constructing membership functions and fuzzy rules from training examples. IEEE Transactions on Systems, Man and Cybernetics-Part B 29(1), 25–40 (1999)

    Article  Google Scholar 

  24. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on SMC 18, 183–190 (1988)

    MATH  MathSciNet  Google Scholar 

  25. Yoon, K.: Systems selection by multiple attribute decision making. Ph.D. dissertation. KansasState University Press, Manhattan (1980)

    Google Scholar 

  26. Zeleny, M.: The attribute – dynamic attitude model (ADAM). Management Science 23, 12–26 (1976)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, JW., Chang, JW. (2010). A Fusion Approach for Multi-criteria Evaluation. In: Nguyen, N.T., Katarzyniak, R., Chen, SM. (eds) Advances in Intelligent Information and Database Systems. Studies in Computational Intelligence, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12090-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12090-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12089-3

  • Online ISBN: 978-3-642-12090-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics