Skip to main content

Near-Field Optical Forces from Surface Plasmon Polaritons: Experiment and Theory

  • Chapter
  • First Online:
Trends in Nanophysics

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1139 Accesses

Abstract

The propulsion of gold nanoparticles by surface plasmon polaritons (SPPs) is demonstrated experimentally. Numerical electromagnetic simulations, using three dimensional finite difference time domain (FDTD) modeling is carried out. These simulations predict that the optical forces are enhanced, due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. The physical origin of the coupling phenomenon is discussed, as it is an important part of the enhanced propulsion phenomenon. A comparison is made between the measured optical force, and the forces predicted by FDTD simulations. The results are shown to be in reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referneces

  1. M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  CAS  Google Scholar 

  2. K.C. Neuman, Block, S,M, Rev. Sci. Instrum. 75, 2787 (2004)

    Article  CAS  Google Scholar 

  3. A. Ashkin, Science 210, 1081 (1980)

    Article  CAS  Google Scholar 

  4. K Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 807 (1992)

    Article  Google Scholar 

  5. K. Svoboda, S.M. Block, Opt. Lett. 19, 930 (1994)

    Article  CAS  Google Scholar 

  6. P.M Hansen, V.K Bhatia, N. Harrit, L. Oddershede, Nano Lett. 5, 1937 (2005)

    Article  CAS  Google Scholar 

  7. L. Bosanac, T. Aabo, P.M Bendix, L.B. Oddershede, Nano Lett. 8, 1486 (2008)

    Article  CAS  Google Scholar 

  8. L. Novotny, R.X Bian, X.S Xie, Phys. Rev. Lett. 79, 645 (1997)

    Article  CAS  Google Scholar 

  9. R. Quidant, D. Petrov, G. Badenes, Opt. Lett. 30, 1009 (2005)

    Article  Google Scholar 

  10. M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, Phys. Rev. Lett. 100, 186804 (2008)

    Article  Google Scholar 

  11. A.N Grigorenko, N.W. Roberts, M.R Dickinson, Y. Zhang, Nat. Photonics 2, 365 (2008)

    Article  CAS  Google Scholar 

  12. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F.J Garcia de Abajo, R. Quidant, Nano Lett. Online early access. doi:10.1021/nl803677x

    Google Scholar 

  13. V. Garces-Chavez, R. Quidant, P.J. Reece, G. Badenes, L. Torner, K. Dholakia, Phys. Rev. B 73, 085417 (2006)

    Article  Google Scholar 

  14. G. Volpe, R. Quidant, G. Badenes, D. Petrov, Phys. Rev. Lett. 96, 238101 (2006)

    Article  Google Scholar 

  15. L.N. Ng, M.N. Zervas, J.S. Wilkinson, Appl. Phys. Lett. 76, 1993 (2000)

    Article  CAS  Google Scholar 

  16. K. Sasaki, J. Hotta, Opt. Lett. 25, 1385 (2000)

    Article  CAS  Google Scholar 

  17. A.H.J. Yang, T. Lerdsuchatawanich, D. Erickson, Nano Lett. 9, 1182 (2009)

    Article  CAS  Google Scholar 

  18. S. Gaugiran, S. Getin, J.M. Fedeli, J. Derouard, Opt. Express 15, 8146–8156 (2007)

    Article  CAS  Google Scholar 

  19. E.D. Palik, Handbook of optical constants of solids II; Academic, Boston, MA (1991)

    Google Scholar 

  20. S.H. Behrens,, D.G. Grier, J. Chem. Phys. 115, 6716 (2001)

    Article  CAS  Google Scholar 

  21. A.S. Zelenina, R. Quidant, M. Nieto-Vesperinas, Opt. Lett. 32, 1156 (2007)

    Article  Google Scholar 

  22. L. Novotny, C. Henkel, Opt. Lett. 33, 1029 (2008)

    Article  CAS  Google Scholar 

  23. B. Sepulveda, J. Alegret, M. Kall, Opt. Express, 15, 14914 (2007)

    Article  CAS  Google Scholar 

  24. S. Gaugiran, S. Getin, J.M. Fedeli, J. Derouard, Opt. Express, 15, 8146 (2007)

    Article  CAS  Google Scholar 

  25. J.R. Watson, R.S. Basu, J.V. Sengers, J. Phys. Chem. Ref. Data, 9, 1255 (1980)

    Article  CAS  Google Scholar 

  26. K. Wang, E. Schonbrun, K.B. Crozier, NanoLett. 9, 2623 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out by Kai Wang and Ethan Schonbrun of the Crozier group at Harvard University. This work was supported by the Defense Advanced Research Project Agency (DARPA) and by the National Science Foundation (NSF). Fabrication work was carried out in the Harvard Center for Nanoscale Systems, which is supported by the NSF. For further details on this work, see Ref [26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Crozier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crozier, K.B. (2010). Near-Field Optical Forces from Surface Plasmon Polaritons: Experiment and Theory. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_9

Download citation

Publish with us

Policies and ethics