Skip to main content

Thin-Film Metamaterials Called Sculptured Thin Films

  • Chapter
  • First Online:
Trends in Nanophysics

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear-nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referneces

  1. A. Lakhtakia, T.G. Mackay, Meet the metamaterials. OSA Opt. Photon. News, 18(1), 32–37 (2007)

    Article  CAS  Google Scholar 

  2. T.G. Mackay, A. Lakhtakia, Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials. Phys. Rev. B, 79, 235121, (2009)

    Article  Google Scholar 

  3. R. Walser, Metamaterials: an introduction, in Introduction to Complex Mediums for Optics and Electromagnetics ed. by W.S. Weiglhofer, A. Lakhtakia, (SPIE Press, Bellingham, WA, USA, 2003) pp. 295–316

    Chapter  Google Scholar 

  4. A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE Press, Bellingham, WA, USA, 2005)

    Book  Google Scholar 

  5. N.O. Young, J. Kowal, Optically active fluorite films. Nature, 183 104–105 (1959)

    Article  CAS  Google Scholar 

  6. R. Messier, The nano-world of thin films. J. Nanophoton., 2 021995 (2008)

    Article  Google Scholar 

  7. J.M. Nieuwenhuizen, H.B. Haanstra, Microfractography of thin films. Phillips Tech. Rev., 27 87–91 (1966)

    Google Scholar 

  8. R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A, 2, 500–503 (1984)

    Article  CAS  Google Scholar 

  9. T. Motohiro, Y. Taga, Thin film retardation plate by oblique deposition. Appl. Opt., 28, 2466–2482 (1989)

    Article  CAS  Google Scholar 

  10. A. Lakhtakia, R. Messier, The key to a thin film HBM: The Motohiro–Taga interface. in Proceedings of Chiral ‘94; 3rd International Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, ed. by F. Mariotte, J.-P. Parneix (Périgueux, France, 1994) pp 125–130

    Google Scholar 

  11. K. Robbie, M.J. Brett, A. Lakhtakia, First thin-film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. A, 13, 2991–2993, (1995)

    Article  CAS  Google Scholar 

  12. V.C. Venugopal, A. Lakhtakia, Sculptured thin films: conception, optical properties and applications, in Electromagnetic Fields in Unconventional Materials and Structures, ed. by O.N. Singh and A. Lakhtakia (Wiley, New York, NY, USA, 2000) pp 151–216

    Google Scholar 

  13. A. Lakhtakia, R. Messier, The past, the present, and the future of sculptured thin films, in Introduction to Complex Mediums for Optics and Electromagnetics, ed. by W.S. Weiglhofer, A. Lakhtakia (SPIE Press, Bellingham, WA, USA, 2003) pp 447–478

    Chapter  Google Scholar 

  14. J.B. Geddes III, Towards shaping of pulsed plane waves in the time domain via chiral sculptured thin films, Frontiers in Optical Technology: Materials and Devices, ed. by P.K. Choudhury, O.N. Singh, (Nova Science, Hauppauge, NY, USA, 2006) pp 1–21

    Google Scholar 

  15. J.A. Polo, Sculptured thin films, in Micromanufacturing and Nanotechnology, ed. by N.P. Mahalik, (Springer, Berlin, Germany, 2006) pp 357–381

    Chapter  Google Scholar 

  16. F. Wang, in Optics of slanted chiral STFs, Frontiers in Surface Nanophotonics: Principles and Applications, ed. by D.L. Andrews Z. Gaburro, (Springer, New York, NY, USA, 2007) pp 129–167

    Chapter  Google Scholar 

  17. R. Messier, V.C. Venugopal, P.D. Sunal, Origin and evolution of sculptured thin films. J. Vac. Sci. Technol. A, 18, 1538–1545 (2000)

    Article  CAS  Google Scholar 

  18. M. Suzuki, Y. Taga, Integrated sculptured thin films. Jap. J. Appl. Phys. Part 2, 40 L358–L359 (2001)

    Article  CAS  Google Scholar 

  19. Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Wideband circular polarization reflector fabricated by glancing angle deposition. Opt. Exp., 16, 5186–5192 (2008)

    Article  CAS  Google Scholar 

  20. I.J. Hodgkinson, Q.H. Wu, Serial bideposition of anisotropic thin films with enhanced linear birefringence. Appl. Opt. 38, 3621–3625 (1999)

    Article  CAS  Google Scholar 

  21. I.J. Hodgkinson, Q.h. Wu, B. Knight, A. Lakhtakia, K. Robbie, Vacuum deposition of chiral sculptured thin films with high optical activity. Appl. Opt., 39, 642–649 (2000)

    Article  CAS  Google Scholar 

  22. A. Lakhtakia, M.C. Demirel, M.W. Horn, J. Xu, Six emerging directions in sculptured-thin-film research. Adv. Solid State Phys. 46, 295–307 (2008)

    Article  Google Scholar 

  23. S. Pursel, M.W. Horn, M.C. Demirel, A. Lakhtakia, Growth of sculptured polymer submicronwire assemblies by vapor deposition. Polymer, 46, 9544–9548 (2005)

    Article  CAS  Google Scholar 

  24. M.C. Demirel, S. Boduroglu, M. Cetinkaya, A. Lakhtakia. Spatially organized free–standing poly(p-xylylene) nanowires fabricated by vapor deposition. Langmuir, 23, 5861–5863 (2007)

    Article  CAS  Google Scholar 

  25. H. Tan, O.K. Ezekoye, J. van der Schalie, M.W. Horn, A. Lakhtakia, J. Xu, W.D. Burgos, Biological reduction of nanoengineered iron(III) oxide sculptured thin films. Environ. Sci. Technol. 40, 5490–5495 (2006)

    Article  CAS  Google Scholar 

  26. K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature, 384, 616 (1996)

    Article  CAS  Google Scholar 

  27. M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures. Nanotechnology, 15, 303–310 (2004)

    Article  CAS  Google Scholar 

  28. M.W. Horn, M.D. Pickett, R. Messier, A. Lakhtakia, Selective growth of sculptured nanowires on microlithographic lattices. J. Vac. Sci. Technol. B, 22, 3426–3430 (2004)

    Article  CAS  Google Scholar 

  29. I. Hodgkinson, Q.h. Wu, J. Hazel, Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl. Opt. 37, 2653–2659 (1998)

    Article  CAS  Google Scholar 

  30. A.C. van Popta, J.C. Sit, M.J. Brett, Optical properties of porous helical thin films. Appl. Opt. 43, 3632–3639 (2004)

    Article  Google Scholar 

  31. K.D. Harris, D. Vick, E.J. Gonzalez, T. Smy, K. Robbie, M.J. Brett, Porous thin films for thermal barrier coatings. Surf. Coat. Technol. 138, 185–191 (2001)

    Article  CAS  Google Scholar 

  32. Y. Inoue, A. Yamaguchi, T. Fujihara, J. Yamazaki, O. Takai, Biomimetic improvement of electrochromic properties of indium nitride. J. Electrochem. Soc. 154, J212–J216 (2007)

    Article  CAS  Google Scholar 

  33. A.L. Elias, K.D. Harris, M.J. Brett, Fabrication of helically perforated gold, nickel, and polystyrene thin films. J. MEMS, 13 808–813 (2004)

    Article  Google Scholar 

  34. J.N. Broughton, M.J. Brett, Electrochemical capacitance in manganese thin films with chevron microstructure. Electrochem. Solid-State Lett. 5, A279–A282 (2002)

    Article  CAS  Google Scholar 

  35. G.K. Kiema, M.J. Brett, Electrochemical characterization of carbon films with porous microstructures. J. Electrochem. Soc. 150 E342–E347 (2003)

    Article  CAS  Google Scholar 

  36. E. Schubert, J. Fahlteich, B. Rauschenbach, M. Schubert, M. Lorenz, M. Grundmann, G. Wagner, Recrystallization behavior in chiral sculptured thin films from silicon. J. Appl. Phys. 100, 016107 (2006)

    Article  Google Scholar 

  37. D.-X. Ye, T. Karabacak, R.C. Picu, G.-C. Wang, T.-M. Lu, Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation. Nanotechnology, 16, 1717–1723 (2005)

    Article  CAS  Google Scholar 

  38. D.-X. Ye, Z.-P. Yang, A.S.P. Chang, J. Bur, S.Y. Lin, T.-M. Lu, R.Z. Wang, S. John. Experimental realization of a well-controlled 3D silicon spiral photonic crystal. J. Phys. D: Appl. Phys. 40, 2624–2628 (2007)

    Article  CAS  Google Scholar 

  39. R.J. Martín-Palma, J.V. Ryan, C.G. Pantano, Surface microstructure of gesbse chalcogenide thin films grown at oblique angle. J. Appl. Phys. 101, 083513 (2007)

    Article  Google Scholar 

  40. R.J. Martín-Palma, J.V. Ryan, C.G. Pantano, Spectral behavior of the optical constants in the visible/near infrared of gesbse chalcogenide thin films grown at glancing angle. J. Vac. Sci. Technol. A, 25, 587–591 (2007)

    Article  Google Scholar 

  41. R.J. Martín-Palma, A. Redondo-Cubero, R. Gago, J.V. Ryan, C.G. Pantano. Rutherford backscattering spectrometry characterization of nanoporous chalcogenide thin films grown at oblique angles. J. Anal. At. Spectrom. 23, 981–984 (2008)

    Article  Google Scholar 

  42. P.C.P. Hrudey, K.L. Westra, M.J. Brett, Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing–angle deposition. Adv. Mater. 18, 224–228 (2006)

    Article  CAS  Google Scholar 

  43. M. Malac, R.F. Egerton, M.J. Brett, B. Dick, Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B, 17, 2671–2674 (1999)

    Article  CAS  Google Scholar 

  44. B. Dick, M.J. Brett, T. Smy, Controlled growth of periodic pillars by glancing angle deposition. J. Vac. Sci. Technol. B, 21, 23–28 (2003)

    Article  CAS  Google Scholar 

  45. M.O. Jensen, M.J. Brett Periodically structured glancing angle deposition thin films. IEEE Trans. Nanotechnol. 4, 269–277 (2005)

    Article  Google Scholar 

  46. J.A. Sherwin, A. Lakhtakia, Nominal model for structure–property relations of chiral dielectric sculptured thin films. Math. Comput. Modelling, 34, 1499–1514 (2001) Corrections: 35 1355–1363 (2002)

    Article  Google Scholar 

  47. J.A. Sherwin, A. Lakhtakia, Nominal model for the optical response of a chiral sculptured thin film infiltrated by an isotropic chiral fluid. Opt. Commun. 214, 231–245 (2002)

    Article  CAS  Google Scholar 

  48. J.A. Sherwin, A. Lakhtakia, Nominal model for the optical response of a chiral sculptured thin film infiltrated by an isotropic chiral fluid-oblique incidence. Opt. Commun. 222 305–329 (2003)

    Article  CAS  Google Scholar 

  49. V.C. Venugopal, A. Lakhtakia, R. Messier, J.-P. Kucera, Low–permittivity materials using sculptured thin film technology. J. Vac. Sci. Technol. B, 18, 32–36 (2000)

    Article  CAS  Google Scholar 

  50. F. Zhang, J. Xu, A. Lakhtakia, S.M. Pursel, M.W. Horn, A. Wang, Circularly polarized emission from colloidal nanocrystal quantum dots confined in cavities formed by chiral mirrors. Appl. Phys. Lett. 91, 023102 (2007)

    Article  Google Scholar 

  51. F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S.M. Pursel, M.W. Horn, Circular polarization emission from an external cavity diode laser. Appl. Phys. Lett., 92 111109, 2008.

    Article  Google Scholar 

  52. F. Wang, A. Lakhtakia, R. Messier, Towards piezoelectrically tunable chiral sculptured thin film lasers. Sens. Actuat. A: Phys., 102, 31–35 (2002)

    Article  Google Scholar 

  53. F. Wang, A. Lakhtakia, R. Messier, On piezoelectric control of the optical response of sculptured thin films. J. Mod. Opt. 50, 239–249 (2003)

    CAS  Google Scholar 

  54. K. Robbie, D.J. Broer, M.J. Brett, Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature, 399, 764–766 (1999)

    Article  CAS  Google Scholar 

  55. J.C. Sit, D.J. Broer, M.J. Brett, Alignment and switching of nematic liquid crystals embedded in porous chiral thin films. Liq. Cryst. 27, 387–391 (2000)

    Article  CAS  Google Scholar 

  56. A. Lakhtakia, J.A. Reyes, Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material-Part 1: Axial dc electric field. Optik, 119, 253–268 (2008)

    Article  CAS  Google Scholar 

  57. A. Lakhtakia, J.A. Reyes, Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material-Part 2: Arbitrary dc electric field. Optik, 119, 269–275, 2008.

    Article  CAS  Google Scholar 

  58. J.A. Reyes, A. Lakhtakia. Electrically controlled optical bandgap in a structurally chiral material. Opt. Commun. 259, 164–173 (2006)

    Article  CAS  Google Scholar 

  59. A. Shalabaney, A. Lakhtakia, I. Abdulhalim, A. Lahav, C. Patzig, I. Hazek, A. Karabchevky, B. Rauschenbach, F. Zhang, J. Xu, Surface plasmon resonance from metallic columnar thin films. Photon. Nanostruct. Fund. Appl, 7, 176–185, 2009

    Article  Google Scholar 

  60. M.A. Motyka, A. Lakhtakia, Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. J. Nanophoton. 2, 021910 (2008)

    Article  Google Scholar 

  61. M.A. Motyka, A. Lakhtakia, Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence. J. Nanophoton. 3, 033502 (2008)

    Article  Google Scholar 

  62. J.A. Polo, Jr., A. Lakhtakia, On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film. Proc. R. Soc. Lond. A, 465, 87–107 (2009)

    Article  CAS  Google Scholar 

  63. J.A. Polo, Jr., A. Lakhtakia, Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material. J. Opt. Soc. Am. A, 26 1696–1703 (2009)

    Article  Google Scholar 

  64. A. Lakhtakia, Y.-J. Jen, C.-F. Lin. Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence. J. Nanophoton. 3, 033506 (2009)

    Article  Google Scholar 

  65. M.W. Seto, K. Robbie, D. Vick, M.J. Brett, L. Kuhn, Mechanical response of thin films with helical microstructures. J. Vac. Sci. Technol. B, 17, 2172–2177 (1999)

    Article  CAS  Google Scholar 

  66. S.M. Pursel, M.W. Horn, Prospects for nanowire sculptured-thin-film devices. J. Vac. Sci. Technol. B, 25 2611–2615 (2007)

    Article  CAS  Google Scholar 

  67. J.J. Steele, G.A. Fitzpatrick, M.J. Brett, Capacitive humidity sensor with high sensitivity and subsecond response times. IEEE Sensors J., 7 955–956 (2007)

    Article  CAS  Google Scholar 

  68. I.J. Hodgkinson, Q.h. Wu, K.M. McGrath, Moisture adsorption effects in biaxial and chiral optical thin film coatings. Proc. SPIE, 3790, 184–194 (1999)

    Article  CAS  Google Scholar 

  69. J.J. Steele, A.C. van Popta, M.M. Hawkeye, J.C. Sit, M.J. Brett, Nanostructured gradient index optical filter for high-speed humidity sensing. Sens. Actuat. B: Chem. 120 213–219 (2006)

    Article  Google Scholar 

  70. E. Ertekin, A. Lakhtakia, Sculptured thin film šolc filters for optical sensing of gas concentration. Eur. Phys. J. Appl. Phys. 5, 45–50 (1999)

    Article  CAS  Google Scholar 

  71. A. Lakhtakia, Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions. Optik, 112 145–148, 2001. Corrections: 112:544, 2001.

    Article  CAS  Google Scholar 

  72. A. Lakhtakia, M.W. McCall, J.A. Sherwin, Q.H. Wu, I.J. Hodgkinson. Sculptured-thin-film spectral holes for optical sensing of fluids. Opt. Commun. 194, 33–46 (2001)

    Article  CAS  Google Scholar 

  73. S. Tsoi, E. Fok, J.C. Sit, J.G.C. Veinot, Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization. Langmuir, 20, 10771–10774 (2004)

    Article  CAS  Google Scholar 

  74. N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, Wettability switching techniques for superhydrophobic surfaces. Nanoscale Res. Lett. 2, 577–597 (2007)

    Article  CAS  Google Scholar 

  75. Y. Zhou, X. Song, M. Yu, B. Wang, H. Yan, Superhydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorphous carbon films. Surf. Rev. Lett., 13, 117–122 (2006)

    Article  CAS  Google Scholar 

  76. M.C. Demirel, E. So, T.M. Ritty, S.H. Naidu, A. Lakhtakia, Fibroblast cell attachment and growth on nanoengineered sculptured thin films. J. Biomed. Mater. Res., Part B: Appl. Biomater. 81, 219–223 (2006)

    Google Scholar 

  77. A. Lakhtakia, Elastodynamic wave propagation in a continuously twisted structurally chiral medium along the axis of spirality. J. Acoust. Soc. Am., 95, 597–600 (1994) Corrections: 95, 3669 (1994)

    Article  Google Scholar 

  78. A. Lakhtakia, K. Robbie, M.J. Brett, Spectral Green’s function for wave excitation and propagation in a piezoelectric, continuously twisted, structurally chiral medium. J. Acoust. Soc. Am. 101, 2052–2059 (1997)

    Article  CAS  Google Scholar 

  79. A. Lakhtakia, M.W. Meredith, Shear axial modes in a PCTSCM. Part IV: Bandstop and notch filters. Sens. Actuat. A: Phys., 73, 193–200 (1999)

    Article  Google Scholar 

  80. A. Lakhtakia, Shear axial modes in a PCTSCM. Part VI: Simpler transmission spectral holes. Sens. Actuat. A: Phys., 87, 78–80 (2000)

    Article  Google Scholar 

  81. R.J. Carey, A. Lakhtakia, Shear axial modes in a PCTSCM. Part VIII: Spectral holes with dissimilar materials but without phase defects. Sens. Actuat. A: Phys., 126, 382–385 (2006)

    Article  Google Scholar 

  82. A. Lakhtakia. Axial loading of a chiral sculptured thin film. Model. Simul. Mater. Sci. Eng. 8, 677–686 (2000)

    Article  Google Scholar 

  83. A. Lakhtakia, Perturbational solution for quasi-axial propagation in a piezoelectric, continuously twisted, structurally chiral medium. Appl. Acoust., 62, 1019–1023 (2001)

    Article  Google Scholar 

  84. A. Lakhtakia, Microscopic model for elastostatic and elastodynamic excitation of chiral sculptured thin films. J. Compos. Mater. 36, 1277–1298 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. B. Geddes III gratefully acknowledges support of a Beckman Postdoctoral Fellowship. A. Lakhtakia thanks the Binder Endowment at Penn State for financial support of his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlesh Lakhtakia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lakhtakia, A., Geddes, J.B. (2010). Thin-Film Metamaterials Called Sculptured Thin Films. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_3

Download citation

Publish with us

Policies and ethics