Skip to main content

Revealing Magnetite Nanoparticles Aggregation Dynamics – A SLS and DLS Study

  • Chapter
  • First Online:
Book cover Trends in Nanophysics

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

\(\mathrm{Fe}_{3}\mathrm{O}_{4}\) nanoparticles in aqueous suspensions are not stable but aggregate, tremendously changing the rheological properties of the nanofluid. Modified version of both the Static Light Scattering (SLS) setup and of Dynamic Light Scattering (DLS) setup experiment were used to monitor \(\mathrm{Fe}_{3}\mathrm{O}_{4}\) nanoparticle aggregation in aqueous diluted suspension. The experiments are described in detail and the variation of the average aggregate diameter in time is presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referneces

  1. P. Vadasz, Heat conduction in nano-fluid suspensions. J. Heat Transfer 128, 465–477 (2006)

    Article  Google Scholar 

  2. U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. ASME Fed. 231, 99–103 (1995)

    CAS  Google Scholar 

  3. S.P. Jang, U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Article  CAS  Google Scholar 

  4. W. Evans, J. Fish, P. Keblinski, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl. Phys. Lett. 88, 093116 (2006)

    Article  Google Scholar 

  5. Y.M. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transfer 43, 3701–3707 (2000)

    Article  CAS  Google Scholar 

  6. R. Prasher, P. Brattacharya, P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (Nanofluids). Phys. Rev. Lett. 94, 025901 (2005)

    Article  Google Scholar 

  7. K. Butter, P.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Direct observation of dipolar chains in ferrofluids in zero field using cryogenic electron microscopy. J. Phys. Condens. Matter 15, S1451–S1470 (2003). doi:10.1088/0953-8984/15/15/310

    Article  CAS  Google Scholar 

  8. S.L. Tripp, S.V. Pusztay , A.E. Ribbe , A. Wei, Off-axis electron holography of self-assembled co nanoparticle rings, J. Am. Chem. Soc. 124, 7914–7915 (2002)

    Article  CAS  Google Scholar 

  9. Z. Xiao, C. Cai, X. Deng, Formation of robust mesoscopic ring structures by self-assembly of SiCl3-terminated dendrimers. Chem. Commun. 16, 1442–1443 (2001). doi:10.1039/b104306b

    Article  Google Scholar 

  10. S.B. Clendenning, S.F. Bidoz, A. Pietrangelo, G. Yang, S. Han, P.M. Brodersen, C.M. Yip, Z. Lu, G.A. Ozin, I. Manners, Ordered 2D arrays of ferromagnetic Fe/Co nanoparticle rings from a highly metallized metallopolymer precursor. J. Mater. Chem. 14, 1686–1690 (2004)

    Article  CAS  Google Scholar 

  11. O.V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2(3), (2004). doi:10.1186/1477-3155-2-3

    Google Scholar 

  12. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167–R181 (2003)

    Article  CAS  Google Scholar 

  13. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl. Phys. Lett. 80(27), (2002). doi:10.1063/1.1430502

    Google Scholar 

  14. L.M. Lacava, B.M. Lacava, R.B. Azevedo, Z.G.M. Lacava, N. Buske, A.L. Tronconi, P. C. Morais, Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance. J. Magn. Magn. Mater. 225(1–2), 79–83 (2001)

    Article  CAS  Google Scholar 

  15. A.W. Hull, A new method of chemical analysis. J. Am. Chem. Soc. 41(8), 1168–1175 (1919). doi:10.1021/ja02229a003

    Article  CAS  Google Scholar 

  16. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939). doi:10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  17. D. Chicea, Coherent light scattering on nanofluids – computer simulation results. Appl. Opt. 47(10), 1434–1442 (2008)

    Article  Google Scholar 

  18. J.W. Goodman, Laser speckle and related phenomena, vol. 9, in Series Topics in Applied Physics, ed. by J.C. Dainty (Springer,New York,NY, (1984), pp. 13–19

    Google Scholar 

  19. J.D. Briers, Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas. 22, R35–R66 (2001)

    Article  CAS  Google Scholar 

  20. M. Giglio, M. Carpineti, A. Vailati, D. Brogioli, Near-field intensity correlation of scattered light. Appl. Opt. 40, 4036–4040 (2001)

    Article  CAS  Google Scholar 

  21. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, J. Lotrian, Opt. Expr. 12, 176 (2004)

    Article  Google Scholar 

  22. Y. Piederriere, J. Le Meur, J. Cariou, J.F. Abgrall, M.T. Blouch, Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation. Opt. Expr. 12, 4596–4601 (2004)

    Article  Google Scholar 

  23. D. Chicea, Speckle size and contrast measurement application in micron-size particle concentration assessment. Eur. Phys. J. Appl. Phys. 40, 305–310 (2007). doi:10.1051/epjap:2007163

    Article  Google Scholar 

  24. G.V.R. Born, Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J. Physiol. 209, 487–511 (1970)

    CAS  Google Scholar 

  25. Y. Ozaki, K. Satoh, Y. Yatomi, T. Yamamoto, Y. Shirasawa, S. Kume, Characterization of liposomes carrying von Willebrand factor-binding domain of platelet glycoprotein Ib\(\upalpha \): a potential substitute for platelet transfusion. Anal. Biochem. 218, 284–294 (1994)

    Article  CAS  Google Scholar 

  26. K. Yabusaki, E. Kokufuta, Aggregation mechanism of blood platelets by time-resolved light scattering. Method Langmuir 18, 39–45 (2002)

    Article  CAS  Google Scholar 

  27. I. Turcu, S. Neamtu, C.V.L. Pop, Angular spreading of scattered light used to investigate platelets aggregation International Conference on Isotopic Processes PIM5 (2007)

    Google Scholar 

  28. I.V. Mindukshev, I.E. Jahatspanian, N.V. Goncharov, R.O. Jenkins, A.I. Krivchenk, A new method for studying platelets, based upon the low-angle light scattering technique. 1. Theoretical and experimental foundations of the method. Spectrosc. Int. J. 19, 235–246 (2005)

    CAS  Google Scholar 

  29. I.V. Mindukshev, E.E. Ermolaeva, E.V. Vivulanets, E.Yu. Shabanova, N.N. Petrishchev, N.V. Goncharov, R.O. Jenkins, A.I. Krivchenko, A new method for studying platelets, based upon the low-angle light scattering technique. 2. Spectrosc. Int. J. 19, 247–257 (2005)

    CAS  Google Scholar 

  30. B.H. Zimm, Molecular theory of the scattering of light in fluids. J. Chem. Phys. 13, 141 (1945). doi: 10.1063/1.1724013

    Article  CAS  Google Scholar 

  31. D. Chicea, C.M. Goncea, On magnetic nanofluid synthesis and physical properties. Optoelectron. Adv. Mater. – Rapid Commun. 3(3), 185–189 (2009)

    CAS  Google Scholar 

  32. W. Tscharnuter, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, NY, 2000), pp. 5469–5485

    Google Scholar 

  33. B.R. Ware, W.H. Flygare, The simultaneous measurement of the electrophoretic mobility and diffusion coefficient in bovine serum albumin solutions by light scattering. Chem. Phys. Lett. 12, 81–85 (1971)

    Article  CAS  Google Scholar 

  34. N.A. Clark, J.H. Lunacek, G.B. Benedek, A study of Brownian motion using light scattering. Am. J. Phys. 38(5), 575–585 (1970)

    Article  Google Scholar 

  35. S.B. Dubin, J.H. Lunacek, G.B. Benedek, Observation of the spectrum of light scattered by solutions of biological macromolecules. PNAS. 57(5), 1164–1171 (1967)

    Article  CAS  Google Scholar 

  36. B.J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, NY, 1976)

    Google Scholar 

  37. J.W. Goodman, Statistical Optics (Wiley Classics Library Edition, New York, NY, 2000)

    Google Scholar 

  38. E. Hecht, Optics (Addison-Wesley, New York, NY, 2001)

    Google Scholar 

  39. A. Einstein, Ann. Phys. (Leipzig) 33, 1275–1298 (1910)

    CAS  Google Scholar 

  40. P. Debye, Light scattering in solutions. J. Appl. Phys. 15, 338 (1944). doi:10.1063/1.1707436

    Article  CAS  Google Scholar 

  41. B.H. Zimm, Molecular theory of the scattering of light in fluids. J. Chem. Phys. 13, 141 (1945). doi:10.1063/1.1724013

    Article  CAS  Google Scholar 

  42. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, Single scattering by red blood cells. Appl. Opt. 37, 7410–7418 (1998)

    Article  CAS  Google Scholar 

  43. M. Hammer, A.N. Yaroslavsky, D. Schweitzer, A scattering phase function for blood with physiological haematocrit. Phys. Med. Biol. 46, N65–69 (2001)

    Article  CAS  Google Scholar 

  44. S. Prahl’s, Mie online calculator at, http://omlc.ogi.edu/calc/mie_calc.html, as of December 10, 2009

  45. S.A. Prahl, M. Keijzer, S.L. Jacques, A.J. Welch, SPIE proceedings of dosimetry of laser radiation in medicine and biology. 5, 102–111 (1989)

    Google Scholar 

  46. D. Chicea, Probing particle aggregation in aqueous suspensions by light scattering anisotropy measurements, presented at ROMOPTO 2009. J. Optoelectron. Adv. Mater. 12, 152–158, (2010)

    CAS  Google Scholar 

  47. C.F. Bohren, D. Huffman, Absorption and scattering of light by small particles (Wiley, New York, NY, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Chicea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chicea, D. (2010). Revealing Magnetite Nanoparticles Aggregation Dynamics – A SLS and DLS Study. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_15

Download citation

Publish with us

Policies and ethics