Skip to main content

Plasmon Spectra of Nano-Structures: A Hydrodynamic Model

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In a seminal paper, published over half a century ago, R.H. Ritchie [1] used Bloch’s hydrodynamic model (HDM) of an electron gas (EG) [2] to describe collective, or plasma excitations by fast electrons in thin metallic films. Ever since, this model played an important role as a phenomenological approach, which often gave qualitatively correct and physically transparent results for many interesting surface and bulk phenomena [3, 4, 5, 6, 7, 8, 9, 10, 11]. With the advent of nanotechnology, interest in plasmon excitations at the surfaces of nano-particles and at the metal-dielectric interfaces grew over the past few years at an unexpectedly fast rate, forming an entirely new research area named Plasmonics [12, 13]. Even in these modern developments where surface plasmon excitations are studied by means of the currently most sophisticated ab initio methods, such as Time-Dependent Density Functional Theory (TD-DFT) [14, 15, 16], the HDM continues to play an important role owing to its versatility in handling the often complex geometry and heterogeneous composition of nano-structures [15].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Referneces

  1. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  CAS  Google Scholar 

  2. F. Bloch, Bremsvermögen von Atomen mit mehreren Elektronen. Z. Phys. A 81, 363–376 (1933)

    CAS  Google Scholar 

  3. J. Crowell, R.H. Ritchie, Radiative decay of Coulomb-stimulated plasmons in spheres. Phys. Rev. 172, 436–440 (1968)

    Article  Google Scholar 

  4. F. Fujimoto, K. Komaki, Plasma oscillations excited by a fast electron in a metallic particle. J. Phys. Soc. Japan 25, 1679–1687 (1968)

    Article  Google Scholar 

  5. R.H. Ritchie, R.E. Wilems, Photon-plasmon interaction in a nonuniform electron gas. Phys. Rev. 178, 372–381 (1969)

    Article  Google Scholar 

  6. J.C. Ashley, O.H. Crawford, J.E. Turner, (eds): The interaction of swift particles and electromagnetic fields with matter (Proceedings of the symposium in honor of R.H. Ritchie. Oak Ridge, TN, 23–25 October 1994). Nucl. Instrum. Methods B 96(Issues 3–4), 441–678 (1995)

    Google Scholar 

  7. A. Eguiluz, S.C. Ying, J.J. Quinn, Influence of the electron density profile on surface plasmons in a hydrodynamic model. Phys. Rev. B 11, 2118–2121 (1975)

    Article  Google Scholar 

  8. G. Barton, Some surface effects in the hydrodynamic model of metals. Rep. Prog. Phys. 42, 963–1016 (1979)

    Article  CAS  Google Scholar 

  9. C. Schwartz, W.L. Schaich, Hydrodynamic models of surface plasmons. Phys. Rev. B 26, 7008–7011 (1982)

    Article  Google Scholar 

  10. O.K. Harsh, B.K. Agarwal, Surface-plasmon dispersion relation for the inhomogeneous charge-density medium. Phys. Rev. B 39, 8150–8152 (1989)

    Article  Google Scholar 

  11. K. Dharamvir, B. Singla, K.N. Pathak, V.V. Paranjape, Plasmon excitations in a metallic slab. Phys. Rev. B 48, 12330–12333 (1992)

    Article  Google Scholar 

  12. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  Google Scholar 

  13. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Article  Google Scholar 

  14. A.G. Marinopoulos, L. Reining, A. Rubio, N. Vast, Optical and loss spectra of carbon nanotubes: depolarization effects and intertube interactions. Phys. Rev. Lett. 91, 046402 (2003)

    Article  CAS  Google Scholar 

  15. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

    Article  CAS  Google Scholar 

  16. C. Kramberger, R. Hambach, C. Giorgetti, M.H. Rummeli, M. Knupfer, J. Fink, B. Buchner, L. Reining, E. Einarsson, S. Maruyama, F. Sottile, K. Hannewald, V. Olevano, A.G. Marinopoulos, T. Pichler, Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene. Phys. Rev. Lett. 100, 196803 (2008)

    Article  CAS  Google Scholar 

  17. Z.L. Wang, Valence electron excitations and plasmon oscillations in thin films, surfaces, interfaces and small particles. Micron. 27, 265–299 (1996)

    Article  CAS  Google Scholar 

  18. N.R. Arista, M.A. Fuentes, Interaction of charged particles with surface plasmons in cylindrical channels in solids. Phys. Rev. B 63, 165401 (2001)

    Article  Google Scholar 

  19. J.L. Gervasoni, N.R. Arista, Plasmon excitations in cylindrical wires by external charged particles. Phys. Rev. B 68, 235302 (2003)

    Article  Google Scholar 

  20. G. Link, R. von Baltz, Hydrodynamic description of surface plasmons: Nonexistence of the unrestricted half-space solution. Phys. Rev. B 60, 16157–16163 (1999)

    Article  CAS  Google Scholar 

  21. J.F. Dobson, H.M. Le, High-frequency hydrodynamics and Thomas-Fermi theory. J. Mol. Struct. (Theocem) 501, 327–338 (2000)

    Article  Google Scholar 

  22. I. Villo-Perez, N.R. Arista, Hydrodynamical model for bulk and surface plasmons in cylindrical wires. Surf. Sci. 603, 1–13 (2009)

    Article  CAS  Google Scholar 

  23. N. Barberán, J. Bausells, Plasmon excitation in metallic spheres. Phys. Rev. B 31, 6354–6359 (1985)

    Article  Google Scholar 

  24. M.T. Michalewicz, Identification of plasmons on small metallic particles. Phys. Rev. B 45, 13664–13670 (1992)

    Article  Google Scholar 

  25. M.T. Michalewicz, M.P. Das, Collective electronic excitations on C60 molecule. Solid State Commun. 84, 1121–1125 (1992)

    Article  CAS  Google Scholar 

  26. J.J. Monaghan, Collective oscillations in many electron atoms. Aust. J. Phys. 26, 597–606 (1973)

    Article  CAS  Google Scholar 

  27. D. Pines, Elementary Excitations in Solids, (Benjamin New York, NY 1963)

    Google Scholar 

  28. M. Sunjic, A.A. Lucas, Multiple plasmon effects in the energy-loss spectra of electrons in thin films. Phys. Rev. B 3, 719–729 (1971)

    Article  Google Scholar 

  29. P. Ahlqvist, Surface plasmons in a thin film. Phys. Scr. 26, 217–224 (1982)

    Article  CAS  Google Scholar 

  30. C.Z. Li, Y.H. Song, Y.N. Wang, Wake effects and energy loss for charged particle moving above a thin metal film. Phys. Rev. A 79, 062903 (2009)

    Article  Google Scholar 

  31. J.A. Stratton, Electromagnetic Theory, (McGraw-Hill, New York, NY 1941)

    Google Scholar 

  32. A.L. Fetter, Electrodynamics of a layered electron gas. 1. Single layer. Ann. Phys. 81, 367–393 (1973)

    Article  Google Scholar 

  33. A.L. Fetter, Electrodynamics of a layered electron gas. 2. Periodic array. Ann. Phys. 88, 1–25 (1974)

    Article  Google Scholar 

  34. E. Zaremba, H.C. Tso, Thomas-Fermi-Dirac-von Weizsäcker hydrodynamics in parabolic wells. Phys. Rev. B 49, 8147–8162 (1994)

    Article  Google Scholar 

  35. L.A. Constantin, J.P. Perdew, J.M. Pitarke, Collapse of the electron gas to two dimensions in density functional theory. Phys. Rev. Lett. 101, 016406 (2008)

    Article  Google Scholar 

  36. J.-N. Chazalviel, Coulomb Screening by Mobile Charges, (Birkhauser, Boston, MA 1999)

    Google Scholar 

  37. G.S. Atwal, N.W. Ashcroft, Relaxation of an electron system: conserving approximation. Phys. Rev. B 65, 115109 (2002)

    Article  Google Scholar 

  38. D.J. Mowbray, Hydrodynamic Modelling of the Electronic Response of Carbon Nanotubes, (unpublished) (University of Waterloo, Waterloo, ON 2007)

    Google Scholar 

  39. D. Ostling, S.P. Apell, A. Rosen, Theory for collective resonances of the C60 molecule. Europhys. Lett. 21, 539–544 (1993)

    Article  Google Scholar 

  40. D. Ostling, S.P. Apell, G. Mukhopadhyay, A. Rosen, Collective resonances of the C60 molecule: effects of electron-density profile. J. Phys. B: At. Mol. Opt. Phys. 29, 5115–5125 (1996)

    Article  Google Scholar 

  41. B. Vasvari, Collective resonances in carbon nanotubes. Phys. Rev. B 55, 7993–8003 (1997)

    Article  CAS  Google Scholar 

  42. G. Barton, C. Eberlein, Plasma spectroscopy proposed for C-60 and C-70. J. Chem. Phys. 95, 1512–1517 (1991)

    Article  CAS  Google Scholar 

  43. P. Longe, S.M. Bose, Collective excitations in mettalic graphene tubules. Phys. Rev. B 48, 18239–18243 (1993)

    Article  CAS  Google Scholar 

  44. C. Yannouleas, E.N. Bogachek, U. Landman, Dimensionality crossovers of the sigma plasmon in coaxial carbon nanotubes. Phys. Rev. B 50, 7977–7980 (1994)

    Article  CAS  Google Scholar 

  45. C. Yannouleas, E.N. Bogachek, U. Landman, Collective excitations of multishell carbon microstructures: Multishell fullerenes and coaxial nanotubes. Phys. Rev. B 53, 10225–10236 (1996)

    Article  CAS  Google Scholar 

  46. T. Stockli, J.M. Bonard, A. Chatelain, Z.L. Wang, P. Stadelmann, Collective oscillations in a single-wall carbon nanotube excited by fast electrons. Phys. Rev. B 64, 115424 (2001)

    Article  Google Scholar 

  47. Y.N. Wang, Z.L. Miskovic, Interactions of fast ions with carbon nanotubes: self-energy and stopping power. Phys. Rev. A 69, 022901 (2004)

    Article  Google Scholar 

  48. L. Wei, Y.N. Wang, Electromagnetic wave propagation in single-wall carbon nanotubes. Phys. Lett. A 333, 303–309 (2004)

    Article  CAS  Google Scholar 

  49. D.J. Mowbray, S. Chung, Z.L. Miskovic, F.O. Goodman, Y.N. Wang, Dynamic interactions of fast ions with carbon nanotubes. Nucl. Instrum. Methods Phys. Res. B 230, 142–147 (2005)

    Article  CAS  Google Scholar 

  50. R.F. Tuktarov, R.F. Akhmet’yanov, E.S. Shikhovtseva, Y.A. Lebedev, V.A. Mazunov, Plasma oscillations in fullerene molecules during electron capture. JETP Lett. 81, 171–174 (2005)

    Article  CAS  Google Scholar 

  51. D.P. Zhou, Y.H. Song, Y.N. Wang, Z.L. Miskovic, Coulomb explosions and stopping of molecular ions channeled through carbon nanotubes. Phys. Rev. A 73, 033202 (2006)

    Article  Google Scholar 

  52. D. Borka, S. Petrovic, N. Neskovic, D.J. Mowbray, Z.L. Miskovic, Influence of the dynamical image potential on the rainbows in ion channeling through short carbon nanotubes. Phys. Rev. A 73, 062902 (2006)

    Article  Google Scholar 

  53. G. Miano, F. Villone, An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model. IEEE Trans. Antennas Propagation 54, 2713–2724 (2006)

    Article  Google Scholar 

  54. C. Javaherian, B. Shokri, Guided dispersion characteristics of metallic single-wall carbon nanotubes. J. Phys. D: Appl. Phys. 42, 055307 (2009)

    Article  Google Scholar 

  55. J. Cazaux, Graphite dielectric constant in ultraviolet. Solid State Commun. 8, 545–547 (1970)

    Article  CAS  Google Scholar 

  56. D.A. Gorokhov, R.A. Suris, V.V. Cheianov, Electron-energy-loss spectroscopy of the C-60 molecule. Phys. Lett. A 223, 116–122 (1996)

    Article  CAS  Google Scholar 

  57. X.D. Jiang, Collective plasmon excitations in graphene tubules. Phys. Rev. B 54, 13487–13490 (1996)

    Article  CAS  Google Scholar 

  58. D.J. Mowbray, Z.L. Miskovic, F.O. Goodman, Y.N. Wang, Interactions of fast ions with carbon nanotubes: two-fluid model. Phys. Rev. B 70, 195418 (2004)

    Article  Google Scholar 

  59. S. Chung, D.J. Mowbray, Z.L. Miskovic, F.O. Goodman, Y.N. Wang, Dynamic interactions of fast ions with multiwalled carbon nanotubes. Radiat. Phys. Chem. 76, 524–528 (2007)

    Article  CAS  Google Scholar 

  60. D.J. Mowbray, Z.L. Miskovic, F.O. Goodman, Ion interactions with carbon nanotubes in dielectric media. Phys. Rev. B 74, 195435 (2006)

    Article  Google Scholar 

  61. A. Moradi, H. Khosravi, Collective excitations in single-walled carbon nanotubes, Phys. Rev. B 76, 113411 (2007)

    Article  Google Scholar 

  62. M. Nejati, C. Javaherian, B. Shokri, B. Jazi, The single-wall carbon nanotube waveguides and excitation of their sigma plus pi plasmons by an electron beam. Phys. Plasmas 16, 022108 (2009)

    Article  Google Scholar 

  63. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, NY 1975)

    Google Scholar 

  64. T. Pichler, M. Knupfer, M.S. Golden, J. Fink, A. Rinzler, R.E. Smalley, Localized and delocalized electronic states in single-wall carbon nanotubes. Phys. Rev. Lett. 100, 4729 (1998)

    Article  Google Scholar 

  65. C.Z. Li, Y.H. Song, Y.N. Wang, Energy loss of a charged particle moving outside a nano-dielectric sphere covered with infinitesimally thin metal film. Nucl. Instrum. Methods B 267, 3129–3132 (2009)

    Article  CAS  Google Scholar 

  66. O.I. Fisun, 2D-plasmon excitation and nonthermal effects on microwaves on biological membranes. Bioelectromagnetics 14, 57–66 (1993)

    Article  CAS  Google Scholar 

  67. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    Article  CAS  Google Scholar 

  68. E. Prodan, P. Nordlander, Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444–5454 (2004)

    Article  CAS  Google Scholar 

  69. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature (London) 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  70. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005)

    Article  Google Scholar 

  71. N. Kroo, Z. Szentirmay, H. Walter, Sub-wavelength microscopy of surface plasmon oscillations and their statistical properties. Surf. Sci. 582, 110–116 (2005)

    Article  CAS  Google Scholar 

  72. L.I. Chelaru, F.J.M. Heringdorf, In situ monitoring of surface plasmons in single-crystalline Ag-nanowires. Surf. Sci. 601, 4541–4545 (2007)

    Article  CAS  Google Scholar 

  73. K. Kusová, F. Charra, G. Schull, I. Pelant, Plasmon modes in light emission from silver nanoparticles induced by a scanning tunneling microscope. Surf. Sci. 602, 345–348 (2008)

    Article  Google Scholar 

  74. R.M. Dickson, L.A. Lyon, Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000)

    Article  CAS  Google Scholar 

  75. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  Google Scholar 

  76. M.F. Lin, K.W.K. Shung, Elementary excitations in cylindrical tubules. Phys. Rev. B 47, 6617–6624 (1993)

    Article  CAS  Google Scholar 

  77. F. Parage, M.M. Doria, O. Buisson, Plasma modes in periodic two-dimensional superconducting-wire networks. Phys. Rev. B 58, R8921–R8924 (1998)

    Article  CAS  Google Scholar 

  78. W.L. Barnes, Surface plasmon-polariton length scales: a route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006)

    Article  Google Scholar 

  79. L.S. Mukina, M.M. Nazarov, A.P. Shkurinov, Propagation of THz plasmon pulse on corrugated and flat metal surface. Surf. Sci. 600, 4771–4776 (2006)

    Article  CAS  Google Scholar 

  80. V. Chegel, Y. Demidenko, V. Lozovski, A. Tsykhonya, Influence of the shape of the particles covering the metal surface on the dispersion relations of surface plasmons. Surf. Sci. 602, 1540–1546 (2008)

    Article  CAS  Google Scholar 

  81. T. Stöckli, Z.L. Wang, J.M. Bonard, P. Stadelmann, A. Châtelain, Plasmon excitations in carbon nanotubes. Phil. Mag. B 79, 1531–1548 (1999)

    Article  Google Scholar 

  82. D. Taverna, M. Kociak, V. Charbois, L. Henrard, Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Phys. Rev. B 66, 235419 (2002)

    Article  Google Scholar 

  83. D. Taverna, M. Kociak, V. Charbois, L. Henrard, O. Stephan, C. Colliex, Simulations of electron energy-loss spectra of an electron passing near a locally anisotropic nanotube. J. Electron Spectrosc. Relat. Phenomena 129, 293298 (2003)

    Article  Google Scholar 

  84. G. Gumbs, A. Balassis, Comparison of the stopping power of plasmons and single-particle excitations for nanotubes. Phys. Rev. B 71, 235410 (2005)

    Article  Google Scholar 

  85. A. Balassis, G. Gumbs, Plasmon instability in energy transfer from a current of charged particles to multiwall and cylindrical nanotube arrays based on self-consistent field theory. Phys. Rev. B 74, 045420 (2006)

    Article  Google Scholar 

  86. S. Segui, J.L. Gervasoni, N.R. Arista, Plasmon interference in nanotubes and nanowires. Surf. Sci. 601, 4169–4174 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all their collaborators who, over the years, have contributed to the results presented in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Villo-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Villo-Perez, I., Mišković, Z., Arista, N. (2010). Plasmon Spectra of Nano-Structures: A Hydrodynamic Model. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_10

Download citation

Publish with us

Policies and ethics