Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 252))

Introduction

This book lights out the different improvement of the recent history of fuzzy logic. The present chapter deals with the connections that exist between fuzzy logic and production scheduling.

Production scheduling is a part of operational research which relies on combinatorial optimization solved by discrete methods. This large area covers several well-known combinatorial problems: vehicle routing problem (in which several vehicle must visit customers at once), scheduling problem [18] (explained in section 2 of this chapter), bin-packing problem (where piece must be placed in a rectangle), assignment problem (where piece must be assign to machine while optimizing a criterion). These short number of both theoretical and practical problems are persistent in numerous technical areas: transportation (flights, trucks, ships, auto-guided-vehicles), shop scheduling, surgery operating theater, layout of warehouse, landing/takeoff runway scheduling, timetable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allet, S.: Handling flexibility in a generalised job shop with a fuzzy approach. European Journal of Operational Research 147(2), 312–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Widmer, M., Bugnon, B., Stoffel, K.: Fun: A dynamic method for scheduling problems. European Journal of Operational Research 83, 271–282 (1995)

    Article  MATH  Google Scholar 

  3. Bertel, S., Billaut, J.-C.: A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research 159(3), 651–662 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, F.T.S., Kazerooni, A., Abhary, K.: A fuzzy approach to operation selection. Engineering Applications of Artificial Intelligence 10(4), 345–356 (1997)

    Article  Google Scholar 

  5. Chen, J.: A branch and bound procedure for the reentrant permutation flow-shop scheduling problem. International Journal of Advanced Manufacturing Technology 29(11-12), 1186–1193 (2006)

    Article  Google Scholar 

  6. Chen, J.C., Chen, K.H., Wu, J.J., Chen, C.W.: A study of the flexible job shop scheduling problem with parallel machines and reentrant process. International Journal of Advanced Manufacturing Technology 39(3-4), 344–354 (2008)

    Article  Google Scholar 

  7. Chen, J.-S., Pan, J.C.-H., Wu, C.-K.: Minimizing makespan in reentrant flow-shops using hybrid tabu search. The International Journal of Advanced Manufacturing Technology 34(3), 353–361 (2007)

    Article  Google Scholar 

  8. Choi, S., Kim, Y., Lee, G.: Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. International Journal of Production Research 43(11), 2149–2167 (2005)

    Article  MATH  Google Scholar 

  9. Choi, S.W., Kim, H.Y., Lee, D.H., Yoon, J., Yun, C.Y., Chae, K.B.: Scheduling algorithms for two-stage re-entrant hybrid flow shops: minimizing makespan under the maximum allowable due dates. International Journal of advanced Manufacturing Technology (2008), doi:10.1007/s00170-008-1656-5

    Google Scholar 

  10. Coffin, M.A., Taylor, B.W.: Multiple criteria R & D project selection and scheduling using fuzzy logic. Computers & Operations Research 23(3), 207–220 (1996)

    Article  Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Demirkol, E., Uzsoy, R.: Decomposition methods for re-entrant flow shops with sequence-dependent setup times. Journal of Scheduling 3(3), 155–177 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dhaenens, C., Lemesre, J., Talbi, E.G.: K-ppm: A new exact method to solve multi-objective combinatorial optimization problems. European Journal of Operational Research (2009) (in press)

    Google Scholar 

  14. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  15. Drobouchevitch, I.G., Strusevich, V.A.: A heuristic algorithm for two-machines re-entrant shop scheduling. Annals of Operation Research 86, 417–439 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dugardin, F., Amodeo, L., Yalaoui, F.: Méthodes multi-objectif pour l’ordonancement de lignes réentrantes. Journal of decision system, 231–255 (2008)

    Google Scholar 

  17. Dugardin, F., Amodeo, L., Yalaoui, F.: Multiobjective scheduling of a reentrant hybrid flowshop. In: 39th International Conference on Computers & Industrial Engineering (CIE39), pp. 193–198 (2009)

    Google Scholar 

  18. Dugardin, F., Chehade, H., Amodeo, L., Yalaoui, F., Prins, C.: Hybrid Job Shop and parallel machine scheduling problems: minimization of total tardiness criterion. Advanced Robotic System Journal, ch.16, 273–292 (2007) ISBN: 978-3-902613-02-8

    Google Scholar 

  19. Dugardin, F., Yalaoui, F., Amodeo, L.: Reentrant lines scheduling and lorenz dominance: a comparative study. In: Computational Intelligence in decision and control (Proceedings of the 8th International FLINS Conference), pp. 707–712 (2008) ISBN 978-981-279-946-3

    Google Scholar 

  20. Dugardin, F., Yalaoui, F., Amodeo, L.: New multiobjective method to solve reentrant hybrid flow shop scheduling problem. European Journal of Operational Research (2009) (available online)

    Google Scholar 

  21. Glover, F., Laguna, M.: Tabu search. In: Reeves, C. (ed.) Modern Heuristic Techniques for Combinatorial Problems, Oxford, England. Blackwell Scientific Publishing, Malden (1993)

    Google Scholar 

  22. Goldberg, D.E.: Genetic algorithms and rule learning in dynamic system control. In: Proc. of the International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, pp. 8–15 (1985)

    Google Scholar 

  23. Grabot, B., Blanc, J.-C., Binda, C.: A decision support system for production activity control. Decision Support Systems 16(2), 87–101 (1996)

    Article  Google Scholar 

  24. Graves, S.C., Meal, H.C., Stefek, D., Hamid, A.: Scheduling of re-entrant flow shop. Journal of Operations Management 3(4), 197–207 (1983)

    Article  Google Scholar 

  25. Gupta, A.K., Sivakumar, A.I.: Conjunctive simulated scheduling. International Journal of Advanced Manufacturing Technology 26(11), 1409–1413 (2005)

    Article  Google Scholar 

  26. Gupta, A.K., Sivakumar, A.I.: Job shop scheduling techniques in semi conductor manufacturing. International Journal of Advanced Manufacturing Technologies 27, 1163–1169 (2006)

    Article  Google Scholar 

  27. Hsieh, B.-W., Chen, C.-H., Chang, S.-C.: Efficient simulation-based composition of scheduling policies by integrating ordinal optimization with design of experiment. IEEE Transactions on Automation Science and Engineering 4(4), 553–568 (2007)

    Article  Google Scholar 

  28. Hwang, H., Sun, J.U.: Production sequencing problem with re-entrant work flows and sequence dependent setup times. International Journal of Production Research 36(9), 2435–2450 (1998)

    Article  MATH  Google Scholar 

  29. Johnson, S.M.: Optimal two- and three-stage production schedules with set up times included. Nav. Res. Logistics Q 1(9), 61–68 (1954)

    Article  Google Scholar 

  30. Kang, Y.-H., Kim, S.-S., Shin, H.J.: A scheduling algorithm for the reentrant shop: an application in semiconductor manufacture. The International Journal of Advanced Manufacturing Technology 35(5), 566–574 (2007)

    Article  Google Scholar 

  31. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE Int. Conf. on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  32. Koole, G., Pot, A.: Workload minimization in re-entrant lines. European Journal of Operational Research 174, 216–233 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kubiak, W., Lou, S.X.C., Wang, Y.: Mean flow time minimization in re-entrant job-shops with a hub. Operations Research 44(5), 764–776 (1996)

    Article  MATH  Google Scholar 

  34. Lau, H.C.W., Chan, T.M., Tsui, W.T., Ho, G.T.S.: Cost optimization of the supply chain network using genetic algorithms. IEEE Transactions on Knowledge and Data Engineering 99(1) (2009)

    Google Scholar 

  35. Lu, S.C.H., Ramaswamy, D., Kumar, P.R.: Efficient scheduling policies to reduce mean and variance of cycle-time in semi conductor manufacturing plants. IEEE Transactions on Semiconductor Manufacturing 7(3), 374–388 (1994)

    Article  Google Scholar 

  36. Manikas, A., Chang, Y.L.: Multi-criteria sequence-dependent job shop scheduling using genetic algorithms. Computers and Industrial Engineering 56(1), 179–185 (2008)

    Article  Google Scholar 

  37. Miragliotta, G., Perona, M.: Decentralised, multi-objective driven scheduling for reentrant shops: A conceptual development and a test case. European Journal of Operational Research 167(3), 644–662 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mohammadi, G., Ozbayrak, M.: Scheduling mixed-model final assembly lines in jit manufacturing. International Journal of Computer Integrated Manufacturing 4(6), 377–382 (2006)

    Article  Google Scholar 

  39. Mönch, L., Drieel, R.: A distributed shifting bottleneck heuristic for complex job shops. Computers and Industrial Engineering 49(3), 363–380 (2005)

    Article  Google Scholar 

  40. Mönch, L., Schabacker, R., Pabst, D., Fowler, J.W.: Genetic algorithm-based subproblem solution procedures for a modified shifting bottleneck heuristic for complex job shops. European Journal of Operational Research 177(3), 2100–2118 (2007)

    Article  MATH  Google Scholar 

  41. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop scheduling problem. Omega 11(5), 91–95 (1983)

    Article  Google Scholar 

  42. Ovacik, I.M., Uzsoy, R.: Exploiting shop stage status information to schedule complex job shops. Journal Manufacturing System 13, 73–84 (1994)

    Article  Google Scholar 

  43. Pan, J.C.-H., Chen, J.-S.: A comparative study of schedule generation procedures for the re-entrant shops. International Journal of Industrial Engineering - Theory, Applications and Practice 11(4), 313–321 (2004)

    Google Scholar 

  44. Pan, J.C.-H., Chen, J.-S.: Mixed binary integer programming formulations for the reentrant job shop scheduling problem. Computer and Operations Research 32, 1197–1212 (2005)

    MATH  MathSciNet  Google Scholar 

  45. Pearn, W.L., Chung, S.H., Yang, M.H., Shiao, K.P.: Solution strategies for multi-stage wafer probing scheduling problem with reentry. Journal of the Operational Research Society 59(5), 637–651 (2008)

    Article  MATH  Google Scholar 

  46. Riise, A.: Comparing genetic algorithms and tabu search for multi-objective optimization. In: IFORS, Abstract conference proceedings, p. 29 (2002)

    Google Scholar 

  47. Slany, W.: Scheduling as a fuzzy multiple criteria optimization problem. Fuzzy Sets and Systems 78(2), 197–222 (1996)

    Article  MathSciNet  Google Scholar 

  48. Suhail, A., Khan, Z.A.: Fuzzy production control with limited resources and response delay. Computers & Industrial Engineering 56(1), 433–443 (2009)

    Article  Google Scholar 

  49. Wang, M.Y., Sethi, S.P., Van De Velde, S.L.: Minimizing makespan in a class of re-entrant shops. Operation Research 45, 702–712 (1997)

    Article  MATH  Google Scholar 

  50. Wang, Z., Qiao, F., Wu, Q.: A new compound priority control strategy in semiconductor wafer fabrication. Networking, Sensing and Control, 80–83 (2005)

    Google Scholar 

  51. Yalaoui, F., Chu, C.: New exact method to solve the pm/r j /∑ C j schedule problem. International Journal of Production Economics 100(1), 168–179 (2006)

    Article  Google Scholar 

  52. Yalaoui, N., Amodeo, L., Mahdi, H., Yalaoui, F.: Hybrid method to solve a facility layout problem: Genetic algorithm - particle swarm optimization. In: 13 th IFAC on Information Control Problems in Manufacturing, INCOM 2009 (2009) (DVD-rom)

    Google Scholar 

  53. Yang, D.-L., Kuo, W.-H., Chern, M.-S.: Multi-family scheduling in a two-machine reentrant flow shop with setups. European Journal of Operational Research 187(3), 1160–1170 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)

    Google Scholar 

  56. Zitzler, E., Thiele, L.: Multi objective evolutionary algorithms: a comparative study and strength pareto approach. IEEE Transaction on Evolutionary Computation 3(2), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yalaoui, N., Dugardin, F., Yalaoui, F., Amodeo, L., Mahdi, H. (2010). Fuzzy Project Scheduling. In: Kahraman, C., Yavuz, M. (eds) Production Engineering and Management under Fuzziness. Studies in Fuzziness and Soft Computing, vol 252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12052-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12052-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12051-0

  • Online ISBN: 978-3-642-12052-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics