Skip to main content

Linear Multivariable System Reduction Using Particle Swarm Optimization and A Comparative Study Using Relative Integral Square Error

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 54))

Abstract

An algorithm for order reduction of linear multivariable systems has been presented using the combined advantages of the dominant pole retention method and the error minimization by particle swarm optimization technique. The denominator of the reduced order transfer function matrix is obtained by retaining the dominant poles of the original system while the numerator terms of the lower order transfer matrix are determined by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique. The reduction procedure is simple and computer oriented.The proposed algorithm has been applied successfully to the transfer function matrix of a 10th order two-input two-output linear time invariant model of a practical power system. The performance of the algorithm is tested by comparing the relevant computer simulation results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Genesio, R., Milanese, M.: A note on the Derivation and use of Reduced Order Models. IEEE Trans. Automat. AC-21(1), 118–122 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Jamshidi, M.: Large Scale Systems Modelling and Control Series, vol. 9. North Holland, New York (1983)

    Google Scholar 

  3. Nagar, S.K., Singh, S.K.: An Algorithmic Approach for System Decomposition and Balanced Realized Model Reduction. Journal of Franklin Inst. 341, 615–630 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Singh, V., Chandra, D., Kar, H.: Improved Routh Pade Approximants: A Computer Aided Approach. IEEE Trans. Automat. Control 49(2), 292–296 (2004)

    Article  MathSciNet  Google Scholar 

  5. Mukherjee, S., Satakshi, Mittal, R.C.: Model Order Reduction using Response-Matching Technique. Journal of Franklin Inst. 342, 503–519 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Parmar, G., Mukherjee, S., Prasad, R.: System Reduction using Factor Division Algorithm and Eigen Spectrum Analysis. Applied Mathematical Modelling 31, 2542–2552 (2007)

    Article  MATH  Google Scholar 

  7. Mukherjee, S., Mishra, R.N.: Reduced Order Modelling of Linear Multivariable Systems using an Error Minimization Technique. Journal of Franklin Inst. 325(2), 235–245 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lamba, S.S., Gorez, R., Bandyopadhyay, B.: New Reduction Technique by Step Error Minimization for Multivariable Systems. Int. J. Systems Sci. 19(6), 999–1009 (1988)

    MathSciNet  Google Scholar 

  9. Prasad, R., Pal, J.: Use of Continued Fraction Expansion for Stable Reduction of Linear Multivariable Systems. Journal of Institution of Engineers, India, IE (I) Journal – EL 72, 43–47 (1988)

    Google Scholar 

  10. Prasad, R., Mittal, A.K., Sharma, S.P.: A Mixed Method for the Reduction of Multivariable Systems. Journal of Institution of Engineers, India, IE (I) Journal – EL 85, 177–181 (2005)

    Google Scholar 

  11. Mukherjee, S., Mishra, R.N.: Order Reduction of Linear Systems using an Error Minimization Technique. Journal of Franklin Inst. 323(1), 23–32 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hwang, C., Wang, K.Y.: Optimal Routh Approximations for Continuous-Time Systems. Int. J. Systems Sci. 15(3), 249–259 (1984)

    Article  MATH  Google Scholar 

  13. Mittal, A.K., Prasad, R., Sharma, S.P.: Reduction of Linear Dynamic Systems using an Error Minimization Technique. Journal of Institution of Engineers, India, IE (I) Journal – EL 84, 201–206 (2004)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  15. Papadopoulos, D.P., Boglou, A.K.: Reduced-Order Modelling of Linear MIMO Systems with the Pade Approximation Method. Int. J. Systems Sci. 21(4), 693–710 (1990)

    Article  MATH  Google Scholar 

  16. Davison, E.J.: A Method for Simplifying Linear Dynamic Systems. IEEE Trans. Automat. Control AC-11, 93–101 (1966)

    Article  MathSciNet  Google Scholar 

  17. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  18. Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Congress on Evolutionary Computation, Seoul Korea, pp. 81–86 (2001)

    Google Scholar 

  19. Papadopoulos, D.P.: Tests and Simulations in Connection with Large Generator Dynamics. In: Proc. of ICEM 1982 Conf. Budapest, Part 3, pp. 881–884 (1982)

    Google Scholar 

  20. Parmar, G., Mukherjee, S., Prasad, R.: Reduced Order Modelling of Linear MIMO Systems using Genetic Algorithm. Int. Journal of Simulation Modelling 6(3), 173–184 (2007)

    Article  Google Scholar 

  21. Lucas, T.N.: Further Discussion on Impulse Energy Approximation. IEEE Trans. Automat. Control  AC-32(2), 189–190 (1987)

    Article  MATH  Google Scholar 

  22. Moore, B.C.: Principal Component Analysis in Linear Systems: Controllability, Observability and Model Reduction. IEEE Trans. Automat. Control  AC-26(1), 17–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Safonov, M.G., Chiang, R.Y.: Model Reduction for Robust Control: A Schur Relative Error Method. Int. J. Adaptive Contr. and Signal Process. 2, 259–272 (1988)

    Article  MATH  Google Scholar 

  24. Safonov, M.G., Chiang, R.Y.: A Schur Method for Balanced-Truncation Model Reduction. IEEE Trans. Automat. Control 34(7), 729–733 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Safonov, M.G., Chiang, R.Y., Limebeer, D.J.N.: Optimal Hankel Model Reduction for Nonminimal Systems. IEEE Trans. Automat. Control 35(4), 496–502 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Varga, A.: Model reduction software in the SLICOT library. In: Datta, B. (ed.) Applied and computational control, signals and circuits, vol. 629. Kluwer Academic Publishers, Boston (2001), http://www.robotic.dlr.de/~varga/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parmar, G., Pandey, M.K., Kumar, V. (2010). Linear Multivariable System Reduction Using Particle Swarm Optimization and A Comparative Study Using Relative Integral Square Error. In: Prasad, S.K., Vin, H.M., Sahni, S., Jaiswal, M.P., Thipakorn, B. (eds) Information Systems, Technology and Management. ICISTM 2010. Communications in Computer and Information Science, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12035-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12035-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12034-3

  • Online ISBN: 978-3-642-12035-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics