Advertisement

Numerical Study of Deformation-Induced Fluid Flows in Osteonal Matrix

  • V. -H. Nguyen
  • T. Lemaire
  • S. Naili
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 27)

Abstract

It is well-known that shear stress effects induced by bone fluid flows on the bone cells are important factors in triggering and signaling bone formation and remodeling. The aim of this work is to study how a mechanical stimulus involved in bone remodeling process changes with various loading conditions and geometrical/physical bone matrix parameters. Moreover, we also study the influence of a microcrack appeared in interstitial bones, which may act as a stimulus for bone remodeling by altering the fluid flow and convective transport through the bone tissue.

A mechanical model has been developed for this purpose. The model consists of a group of osteons surrounded by their cement lines and interstitial bone matrix which are all modeled as three-dimensional fully-saturated poroelastic media. The idealized structure is assumed to be homogenous in the longitudinal direction. We modeled also an individual microcrack located in the interstitial bone matrix that runs along the direction of osteons. Under uniform cyclic axial loading, an equivalent two-dimensional problem may be deduced. This problem is solved by using the finite element method in the frequency domain.

Keywords

cortical bone poroelasticity microcrack fluid flow finite element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. -H. Nguyen
    • 1
  • T. Lemaire
    • 1
  • S. Naili
    • 1
  1. 1.Laboratoire de Modélisation et Simulation Multi Echelle (CNRS 3160)Université Paris-EstCréteilFrance

Personalised recommendations