Advertisement

Validation of the Ambulatory Impedance Cardiography Method

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 76)

Abstract

In this chapter it is described the problem of ambulatory impedance cardiography validation against the clinically accepted reference methods, basing on data from own research. It also contains the discussion of the motion artefacts in ambulatory impedance cardiography.

Keywords

Stroke Volume Ejection Time Systolic Time Interval Daytime Activity Cycle Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antonicelli, R., Savonitto, S., Gambini, C., Tomassini, P.F., Sardina, M., Paciaroni, E.: Impedance cardiography for repeated determination of stroke volume in elderly hypertensives: correlation with pulsed Doppler echocardiography. Angiology 42(8), 648–653 (1991)CrossRefGoogle Scholar
  2. 2.
    Aust, P.E., Belz, G.G., Belz, G., Koch, W.: Comparison of impedance cardiography for measurement of stroke volume. Eur. J. Clin. Pharmacol. 23(6), 475–477 (1982)CrossRefGoogle Scholar
  3. 3.
    Barnes, V.A., Johnson, M.H., Treiber, F.: Temporal stability of twenty-four-hour ambulatory hemodynamic bioimpedance measures in African American adolescents. Blood Pressure Monit. 9(4), 173–177 (2004)CrossRefGoogle Scholar
  4. 4.
    Bellard, E., Fortrat, J.O., Schang, D., Dupuis, J.M., Victor, J., Leftheriotis, G.: Changes in the transthoracic impedance signal predict the outcome of a 70 degrees head-up tilt test. Clin. Sci. (Lond) 104, 119–126 (2003)CrossRefGoogle Scholar
  5. 5.
    Boer, P., Roos, J.C., Geyskes, G.G., Mees, E.J.D.: Measurement of cardiac output by impedance cardiography under various conditions. Am. J. Physiol. 237(4), 491–492 (1979)Google Scholar
  6. 6.
    Bogaard, H.J., Woltjer, H.H., Postmus, P.E., de Vries, P.M.: Assessment of the haemodynamic response to exercise by means of electrical impedance cardiography: method, validation and clinical applications. Physiol. Meas. 18(2), H95–H105 (1997)CrossRefGoogle Scholar
  7. 7.
    Brignole, M., Alboni, P., Benditt, D., Bergfeldt, L., Blanc, J.J., Bloch Thomsen, P.E., van Dijk, J.G., Fitzpatrick, A., Hohnloser, S., Janousek, J., Kapoor, W., Kenny, R.A., Kulakowski, P., Moya, A., Raviele, A., Sutton, R., Theodorakis, G., Wieling, W.: Task force on syncope, European Society of Cardiology. Guidelines on management (diagnosis and treatment) of syncope. Eur. Heart J. 22, 1256–1306 (2001)CrossRefGoogle Scholar
  8. 8.
    Charloux, A., Lonsdorfer-Wolf, E., Richard, R., Lampert, E., Oswald-Mammosser, M., Mettauer, B., Geny, B., Lonsdorfer, J.: A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur. J. Appl. Physiol. 82(4), 313–320 (2000)CrossRefGoogle Scholar
  9. 9.
    Christensen, T.B., Jensen, B.V., Hjerpe, J., Kanstrup, I.L.: Cardiac output measured by electric bioimpedance compared with the CO2 rebreathing technique at different exercise levels. Clin. Physiol. 20(2), 101–105 (2000)CrossRefGoogle Scholar
  10. 10.
    Cybulski, G.: Computer method for automatic determination of stroke volume using impedance cardiography signals. Acta Physiol. Pol. 39(5–6), 494–503 (1988)Google Scholar
  11. 11.
    Cybulski, G., Szulc, M.J., Torbicki, A., Pasierski, T.: A comparison between impedance cardiography and two dimensional echocardiography methods for measurements of stroke volume (SV) and systolic time intervals (STI). J. Physiol. Pharmacol. 44(3), 251–258 (1993)Google Scholar
  12. 12.
    Cybulski, G., Ziółkowska, E., Książkiewicz, A., Łukasik, W., Niewiadomski, W., Kodrzycka, A., Pałko, T.: Application of impedance cardiography ambulatory monitoring device for analysis of central hemodynamics variability in atrial fibrillation. In: Computers in Cardiology, vol. 26 (Cat. No.99CH37004). IEEE, pp. 563–566. Piscataway, NJ, USA (1999)Google Scholar
  13. 13.
    Cybulski, G., Michalak, E., Koźluk, E., Piątkowska, A., Niewiadomski, W.: Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions. Med. Biol. Eng. Comput. 42, 707–711 (2004)CrossRefGoogle Scholar
  14. 14.
    Cybulski, G.: Dynamic impedance cardiography––the system and its applications. Pol. J. Med. Phys. Eng. 11(3), 127–209 (2005)Google Scholar
  15. 15.
    Cybulski, G., Niewiadomski, W., Gasiorowska, A., Kwiatkowska, D.: Signal quality evaluation in ambulatory impedance cardiography. In: IFMBE Proceedings vol. 17 (Ed. Scharfetter, Merwa), 13th International Conference on Electrical Bioimpedance, Graz, Austria, Aug 29th–Sept 2nd, pp. 590–559 (2007)Google Scholar
  16. 16.
    Dittmann, H., Voelker, W., Karsch, K.R., Seipel, L.: Influence of sampling site and flow area on cardiac output measurement by Doppler echocardiography. J. Am. Coll. Cardiol. 10, 818–823 (1987)CrossRefGoogle Scholar
  17. 17.
    Drazner, M.H., Thompson, B., Rosenberg, P.B., Kaiser, P.A., Boehrer, J.D., Baldwin, B.J., Dries, D.L., Yancy, C.W.: Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am. J. Cardiol. 89(8), 993–995 (2002)CrossRefGoogle Scholar
  18. 18.
    Dubin, J., Wallerson, D.C., Cody, R.J., Devereux, R.B.: Comparative accuracy of Doppler echocardiographic methods for clinical stroke volume determination. Am. Heart J. 120, 116–123 (1990)CrossRefGoogle Scholar
  19. 19.
    Ebert, T.J., Eckberg, D.L., Vetrovec, G.M., Cowley, M.J.: Impedance cardiograms reliably estimate beat-by-beat changes of left ventricular stroke volume in humans. Cardiovasc. Res. 18, 354–360 (1984)CrossRefGoogle Scholar
  20. 20.
    Francis, D.P., Coats, A.J.S., Gibson, D.G.: How high can correlation coefficient be? Effect of limited reproducibility on common cardiological variables. Int. J. Cardiol. 69, 185–199 (1999)CrossRefGoogle Scholar
  21. 21.
    Gardin, J.M., Tobis, J.M., Dabestani, A., Smith, C., Elkayam, U., Castleman, E., White, D., Allfie, A., Henry, W.L.: Superiority of two-dimensional measurements of aortic vessel diameter in Doppler echocardiographic estimates of left ventricular stroke volume. J. Am. Coll. Cardiol. 6, 66–74 (1985)CrossRefGoogle Scholar
  22. 22.
    Geddes, L.A., Sadler, C.: The specific resistance of blood at body temperature. Med. Biol. Eng. 5, 336–339 (1973)CrossRefGoogle Scholar
  23. 23.
    Judy, W.V., Langley, F.M., McCowen, K.D., Stinned, D.M., Backer, L.E., Johnson, P.C.: Comparative evaluation of the thoracic impedance and isotope dilution methods for measuring cardiac output. Aerospace Med. 40(5), 532–536 (1969)Google Scholar
  24. 24.
    Kelsey, R.M., Reiff, S., Wiens, S., Schneider, T.R., Mezzacappa, E.S., Guethlein, W.: The ensemble-averaged impedance cardiogram: an evaluation of scoring methods and interrater reliability. Psychophysiology 35(3), 337–340 (1998)CrossRefGoogle Scholar
  25. 25.
    Kenny, R.A., Ingram, A., Bayliss, J., Sutton, R.: Head-up tilt: a useful test for investigating unexplained syncope. Lancet 2, 1352–1354 (1986)Google Scholar
  26. 26.
    Koźluk, E., Piątkowska, A., Wołkanin-Bartnik i wsp, J.: Permanent AAI pacing in patient with vasovagal syndrome––case study (in Polish). Folia Cardiol. 8, 28 (2001)Google Scholar
  27. 27.
    Koźluk, E., Cybulski, G., Szufladowicz i wsp, E.: Application of Reomonitor in optimizing the pacemaker with rate drop response (in Polish). Folia Cardiol. 8, 42 (2001)Google Scholar
  28. 28.
    Kubicek, W.G., Karnegis, J.N., Patterson, R.P., Witsoe, D.A., Mattson, R.H.: Development and evaluation of an impedance cardiac output system. Aerospace Med. 37(12), 1208–1212 (1966)Google Scholar
  29. 29.
    Kubicek, W.G., Patterson, R.P., Witsoe, D.A.: Impedance cardiography as a non-invasive method for monitoring cardiac function and other parameters of the cardiovascular system. Ann. N.Y. Acad. Sci. 170, 724–732 (1970)CrossRefGoogle Scholar
  30. 30.
    Stephen, J.L., Sinead, M., David, E.N., David, J.W., Martin, A.D.: Non-invasive measurement of cardiac output in patients with chronic heart failure. Blood Pressure Monit. 9(5), 277–280 (2004)CrossRefGoogle Scholar
  31. 31.
    Loutfi, H., Nishimura, R.A.: Quantitative evaluation of left ventricular systolic function by Doppler echocardiographic techniques. Echocardiography 11, 305–314 (1994)CrossRefGoogle Scholar
  32. 32.
    Milsom, I., Sivertsson, R., Biber, B., Olsson, T.: Measurement of stroke volume with impedance cardiography. Clin. Physiol. 2, 409–417 (1982)CrossRefGoogle Scholar
  33. 33.
    Muzzi, M., Jeutter, D.C., Smith, J.J.: Computer-automated impedance-derived cardiac indexes. IEEE Trans. Biomed. Eng. 33(1), 42–47 (1986)CrossRefGoogle Scholar
  34. 34.
    Nakagawara, M., Yamakoshi, K.: A portable instrument for non-invasive monitoring of beat-by-beat cardiovascular haemodynamic parameters based on the volume-compensation and electrical-admittance method. Med. Biol. Eng. Comput. 38(1), 17–25 (2000)CrossRefGoogle Scholar
  35. 35.
    Nakonezny, P.A., Kowalewski, R.B., Ernst, J.M., Hawkley, L.C., Lozano, D.L., Litvack, D.A., Berntson, G.G., Sollers 3rd, J.J., Kizakevich, P., Cacioppo, J.T., Lovallo, W.R.: New ambulatory impedance cardiograph validated against the Minnesota Impedance Cardiograph. Psychophysiology 38(3), 465–473 (2001)CrossRefGoogle Scholar
  36. 36.
    Niizeki, K., Miyamoto, Y., Doi, K.: A comparison between cardiac output determined by impedance cardiography and the rebreathing method during exercise in man. Jpn. J. Physiol. 39(3), 441–446 (1989)CrossRefGoogle Scholar
  37. 37.
    Nishimura, R.A., Callahan, M.J., Schaff, H.V., Ilstrup, D.M., Miller, B.A., Tajik, A.J.: Noninvasive measurement of cardiac output by continuous-wave Doppler echocardiography: initial experience and review of the literature. Mayo Clin. Proc. 59, 484–489 (1984)Google Scholar
  38. 38.
    Rosenberg, P., Yancy, C.W.: Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr. Opin. Cardiol. 15(3), 151–155 (2000)CrossRefGoogle Scholar
  39. 39.
    Scherhag, A., Kaden, J.J., Kentschke, E., Sueselbeck, T., Borggrefe, M.: Comparison of impedance cardiography, thermodilution-derived measurements of stroke volume, cardiac output at rest, during exercise testing. Cardiovasc. Drugs Ther. 19(2), 141–147 (2005)CrossRefGoogle Scholar
  40. 40.
    Smorawiński, J., Nazar, K., Kaciuba-Uscilko, H., Kamińska, E., Cybulski, G., Kodrzycka, A., Bicz, B., Greenleaf, J.E.: Effects of 3-day bed rest on physiological responses to graded exercise in athletes and sedentary men. J. Appl. Physiol 91, 249–257 (2001)Google Scholar
  41. 41.
    Willemsen, G.H., De Geus, E.J., Klaver, C.H., Van Doornen, L.J., Carroll, D.: Ambulatory monitoring of the impedance cardiogram. Psychophysiology 33(2), 184–193 (1996)CrossRefGoogle Scholar
  42. 42.
    Ziemba, A.W., Chwalbińska-Moneta, J., Kaciuba-Uscilko, H., Kruk, B., Krzeminski, K., Cybulski, G., Nazar, K.: Early effects of short-term aerobic training. Physiological responses to graded exercise. J. Sports Med. Phys. Fitness 43(1), 57–63 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Applied PhysiologyMedical Research Centre of Polish Academy of SciencesWarsawPoland
  2. 2.Department of Mechatronics, Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations