Skip to main content

Elektronenstoßanregung und -ionisation

  • Chapter
  • First Online:
Atome, Moleküle und optische Physik 2

Part of the book series: Springer-Lehrbuch ((SLB))

  • 9494 Accesses

Zusammenfassung

Der nicht an Details interessierte Leser mag diesen etwas anspruchsvollen Abschnitt ohne Sorge um das Verständnis des nachfolgenden Texts überspringen.

Im vorangehenden Kapitel haben wir eine Übersicht über inelastische Streuprozesse insgesamt gegeben, in die Theorie der Anregung durch Schwerteilchenstöβe eingeführt und dies mit Beispielen hinterlegt. Hier wollen wir nun einen Schritt auf etwas schwieriges Terrain wagen, und ein vertieftes Verständnis für Elektronenstoβanregung und -ionisation entwickeln. Insbesondere letztere ist nicht nur intellektuell herausfordernd, sondern auch für die Praxis wichtig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Schow, E., et al.: 2005, ‘Low-energy electron-impact ionization of helium’. Phys. Rev. A 72, 062717.

    Article  ADS  Google Scholar 

  • Rudd, M. E.: 1991, ‘Differential and total cross-sections for ionization of helium and hydrogen by electrons’. Phys. Rev. A 44, 1644–1652.

    Article  ADS  Google Scholar 

  • Bethe, H.: 1930, ‘Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie’. An. Phys. 397, 325–400.

    Article  Google Scholar 

  • Inokuti, M.: 1971, ‘Inelastic collisions of fast charged particles with atoms and molecules - Bethe theory revisited’. Rev. Mod. Phys. 43, 297–347.

    Article  ADS  Google Scholar 

  • Lotz, W.: 1970, ‘Electron-impact ionization cross-sections for atoms up to Z=108’. Z. Phys. 232, 101–107.

    Article  ADS  Google Scholar 

  • Ning, C. G., et al.: 2008, ‘High resolution electron momentum spectroscopy of the valence orbitals of water’. Chem. Phys. 343, 19–30.

    Article  ADS  Google Scholar 

  • Ray, H., U. Werner und A. C. Roy: 1991, ‘Doubly differential cross-sections for ionization of helium by electron-impact’. Phys. Rev. A 44, 7834–7837.

    Article  ADS  Google Scholar 

  • Williams, J. F., P. L. Bartlett und A. T. Stelbovics: 2006, ‘Threshold electron-impact ionization mechanism for hydrogen atoms’. Phys. Rev. Lett. 96, 123201.

    Article  ADS  Google Scholar 

  • Avaldi, L., R. Camilloni, E. Fainelli und G. Stefani: 1987, ‘Absolute Double Differential Ionization Cross-Section for Electron-Impact - He’. Il Nuovo Cimento D 9, 97–113.

    Article  ADS  Google Scholar 

  • Burke, P.: 2006, ‘Electron-atom, electron-ion and electron-molecule collisions’. In: Handbook of Atomic, Molecular and Optical Physics. Heidelberg, New York: Springer, pp. 705–729.

    Google Scholar 

  • Sun, W. G., et al.: 1995, ‘Detailed theoretical and experimental-analysis of low-energy electron-N2 scattering’. Phys. Rev. A 52, 1229–1256.

    Article  ADS  Google Scholar 

  • Böhm, S., et al.: 2002, ‘Measurement of the field-induced dielectronic-recombination-rate enhancement of O5+ ions differential in the Rydberg quantum number n’. Phys. Rev. A 65, 052728.

    Article  ADS  Google Scholar 

  • Lotz, W.: 1968, ‘Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium’. Z. Phys. 216, 241–247.

    Article  ADS  Google Scholar 

  • Schlemmer, P., M. K. Srivastava, T. Rosel und H. Ehrhardt: 1991, ‘Electron-impact ionization of helium at intermediate collision energies’. J. Phys. B: At. Mol. Phys. 24, 2719–2736.

    Article  ADS  Google Scholar 

  • Amaldi, U., A. Egidi, Marconer.R und G. Pizzella: 1969, ‘Use of a 2 channeltron coincidence in a new line of research in atomic physics’. Rev. Sci. Instrum. 40, 1001–1004.

    Article  ADS  Google Scholar 

  • Shah, M. B., D. S. Elliott und H. B. Gilbody: 1987, ‘Pulsed crossed-beam study of the ionization of atomic-hydrogen by electron-impact’. J. Phys. B: At. Mol. Phys. 20, 3501–3514.

    Article  ADS  Google Scholar 

  • Wannier, G. H.: 1953, ‘The threshold law for single ionization of atoms or ions by electrons’. Phys. Rev. 90, 817–825.

    Article  MATH  ADS  Google Scholar 

  • Lassettre, E. N., A. Skerbele, M. A. Dillon und K. J. Ross: 1968, ‘High-resolution study of electron-impact spectra at kinetic energies between 33 and 100 eV and scattering angles to \(16^\circ\)’. J. Chem. Phys. 48, 5066–5096.

    Article  ADS  Google Scholar 

  • Saenz, A., W. Weyrich und P. Froelich: 1996, ‘The first Born approximation and absolute scattering cross sections’. J. Phys. B: At. Mol. Phys. 29, 97–113.

    Article  ADS  Google Scholar 

  • Sorokin, A. A., L. A. Shmaenok, S. V. Bobashev, B. Mobus, H. Richter und G. Ulm: 2000, ‘Measurements of electron-impact ionization cross sections of argon, krypton, and xenon by comparison with photoionization’. Phys. Rev. A 61, 022723.

    Article  ADS  Google Scholar 

  • Vinodkumar, M., C. Limbachiya, B. Antony und K. N. Joshipura: 2007, ‘Calculations of elastic, ionization and total cross sections for inert gases upon electron impact: threshold to 2 keV’. J. Phys. B: At. Mol. Phys. 40, 3259–3271.

    Article  ADS  Google Scholar 

  • Macek, J. H.: 1967, ‘Application of fock expansion to doubly excited states of helium atom’. Phys. Rev. 160, 170–174.

    Article  ADS  Google Scholar 

  • Ehrhardt, H., M. Schulz, T. Tekaat und K. Willmann: 1969, ‘Ionization of helium - Angular correlation of scattered and ejected electrons’. Phys. Rev. Lett. 22, 89–92.

    Article  ADS  Google Scholar 

  • Oda, N.: 1975, ‘Energy and angular-distributions of electrons from atoms and molecules by electron-impact’. Radiat. Res. 64, 80–95.

    Article  Google Scholar 

  • Bray, I., D. A. Konovalov und I. E. McCarthy: 1991, ‘Electron-scattering by atomic sodium - 32 s-32 s and 32 s-32 p cross-sections at 10 to 100 eV’. Phys. Rev. A 44, 7179–7184.

    Article  ADS  Google Scholar 

  • Kim, Y. K.: 2007, ‘Scaled Born cross sections for excitations of H2 by electron impact’. J. Chem. Phys. 126.

    Google Scholar 

  • Lotz, W.: 1967, ‘An empirical formula for electron-impact ionization cross-section’. Z. Phys. 206, 205–211.

    Article  ADS  Google Scholar 

  • Rau, A. R. P.: 1971, ‘2 electrons in a Coulomb Potential - Double-continuum wave Functions and Threshold Law for Electron-Atom Ionization’. Phys. Rev. A 4, 207–220.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingolf V. Hertel .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hertel, I.V., Schulz, CP. (2010). Elektronenstoßanregung und -ionisation. In: Atome, Moleküle und optische Physik 2. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11973-6_8

Download citation

Publish with us

Policies and ethics