Skip to main content

Characterization of Acid–Base Sites in Zeolites

  • Chapter
  • First Online:
Calorimetry and Thermal Methods in Catalysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

Abstract

The review of the use of adsorption microcalorimetry for the characterization of acid-base properties of various types of zeolites is provided. Factors influencing these properties are introduced and explained. Furthermore, the relationship between the data obtained by this technique and catalytic activity of investigated materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.W. Breck, Zeolite Molecular Sieves: Structure Chemistry and Use (Wiley, New York, 1974)

    Google Scholar 

  2. P.A. Jacobs, Carboniogenic Activity of Zeolites (Elsevier Science Ltd., Amsterdam, 1977)

    Google Scholar 

  3. J.V. Smith et al., Topochemistry of zeolites and related materials. 1. Topology geometry. Chem. Rev. 88, 149–182 (1988)

    Article  CAS  Google Scholar 

  4. W.M. Meier, Molecular Sieves (Society of Chemical industry, London, 1968)

    Google Scholar 

  5. R. Fricke, H. Kosslick, G. Lische, M. Richter et al., Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem. Rev. 100, 2303–2405 (2000)

    Article  CAS  Google Scholar 

  6. Database of zeolite structures (2000) The International Zeolite Association, http://www.iza-structure.org/databases/, Accessed 24 Sept. 2011

  7. A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, New York, 1988)

    Google Scholar 

  8. W.M. Meier, Zeolites and zeolite like materials. Stud. Surf. Sci. Catal. 28, 13–22 (1986)

    Article  CAS  Google Scholar 

  9. J.B. Uytterhoeven, L.C. Christner, W.K. Hall et al., Studies of the hydrogen held by solids. VIII. The decationated zeolites. J. Phys. Chem. 69, 2117–2126 (1965)

    CAS  Google Scholar 

  10. R.P. Townsend, R. Harjula, in Ion Exchange, in Molecular Sieves by Conventional Techniques, vol. 3, ed. by H. Karge, J. Weitkamp, Molecular Sieves-Science, Technology, (Springer, Berlin, 2002), pp. 2–42

    Google Scholar 

  11. R.P. Townsend, Ion exchange in zeolites. Stud. Surf. Sci. Catal. 58, 359–390 (1991)

    Article  CAS  Google Scholar 

  12. W.E. Farneth, R.J. Gorte et al., Methods for characterizing zeolites acidity. Chem. Rev. 95, 615–635 (1995)

    Article  CAS  Google Scholar 

  13. M. Niwa, N. Katada, K. Okumura, Characterization and Design of Zeolite Catalysts (Springer, Berlin, 2010)

    Book  Google Scholar 

  14. H. Ichihashi, M. Ishida, A. Shiga, M. Kitamura, T. Suzuki, K. Suenobu, K. Sugita et al., The catalysis of vapor-phase Beckmann rearrangement for the production of \(\varepsilon \)-caprolactam. Catal. Surv. Asia. 7, 261–270 (2003)

    Article  CAS  Google Scholar 

  15. S. Shimizu, N. Abe, A. Iguchi, H. Sato et al., Synthesis of pyridine bases: general methods and recent advances in gas phase synthesis over ZSM-5 zeolite. Catal. Surv. Jpn. 2, 71–76 (1998)

    Article  CAS  Google Scholar 

  16. H. Ishida et al., Liquid-phase hydration process of cyclohexene with zeolites. Catal. Surv. Jpn. 1, 241–246 (1997)

    Article  CAS  Google Scholar 

  17. H. Tsuneki, M. Kirishiki, T. Oku et al., Development of 2,2’-iminodiethanol selective production process using shape-selective pentasil-type zeolite catalyst. Bull. Chem. Soc. Jpn. 80, 1075–1090 (2007)

    Article  CAS  Google Scholar 

  18. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, S. Kagawa et al., Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. J. Phys. Chem. 95, 3727–3730 (1991)

    Article  CAS  Google Scholar 

  19. X.B. Feng, W.K. Hall et al., FeZSM-5: a durable SCR catalyst for NOx removal from combustion streams. J. Catal. 166, 368–376 (1997)

    Article  CAS  Google Scholar 

  20. Y.J. Li, J.N. Armor et al., Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen. Appl. Catal. B Environ. 1, L31–L40 (1992)

    Article  CAS  Google Scholar 

  21. D.J. Wang, J.H. Lunsford, M.P. Rosynek et al., Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. J. Catal. 169, 347–357 (1997)

    Article  CAS  Google Scholar 

  22. Y. Ashina, T. Fujita, M. Fukatsu, K. Niwa, J. Yagi et al., Manufacture of dimethylamine using zeolite catalyst. Stud. Surf. Sci. Catal. 28, 779–786 (1986)

    Article  CAS  Google Scholar 

  23. A. Corma, V. Martinez-Soria, E. Schnoeveld et al., Alkylation of benzene with short-chain olefins over MCM-22 zeolite: catalytic behaviour and kinetic mechanism. J. Catal. 192, 163–173 (2000)

    Article  CAS  Google Scholar 

  24. U. Freese, F. Heinrich, F. Roessner et al., Acylation of aromatic compounds on H-Beta zeolites. Catal. Today. 49, 237–244 (1999)

    Article  CAS  Google Scholar 

  25. T.R. Hughes, W.C. Buss, P.W. Tamm, R.L. Jacobson et al., Aromatization of hydrocarbons over platinum alkaline earth zeolites. Stud. Surf. Sci. Catal. 28, 725–732 (1986)

    Article  CAS  Google Scholar 

  26. R.E. Jentoft, M. Tsapatsis, M.E. Davis, B.C. Gates et al., Platinum clusters supported in zeolite LTL: influence of catalyst morphology on performance in n-hexane reforming. J. Catal. 179, 565–580 (1998)

    Article  CAS  Google Scholar 

  27. H. Pfiefer, D. Freude, J. Kärger, Catalysis and Adsorption by Zeolites (Elsevier, Amsterdam, 1991)

    Google Scholar 

  28. M. Hunger, D. Freude, D. Fenzke, H. Pfeifer et al., \(^{1}\)H solid-state NMR studies of the geometry of Brönsted acid sites in zeolites H-ZSM-5. Chem. Phys. Lett. 191, 391–395 (1992)

    Article  CAS  Google Scholar 

  29. T.J. Gluszak, D.T. Chen, S.B. Sharma, J.A. Dumesic, T.W. Root et al., Observation of Brönsted acid sites of D-Y zeolites with deuterium NMR. Chem. Phys. Lett. 190, 36–41 (1992)

    Article  CAS  Google Scholar 

  30. P. Batamack, C. Doremieux-Morin, J. Fraissard et al., Broad-line \(^{1}\)H NMR: a new application for studying the Brönsted acid strength of solids. J. Phys. Chem. 97, 9779–9783 (1993)

    Article  CAS  Google Scholar 

  31. A.L. Blumenfeld, J.J. Fripiat et al., Characterization of Brönsted and Lewis acidity in zeolites by solid-state NMR and the recent progress in the REDOR technique. Magn. Reson. Chem. 37, S118–S125 (1999)

    Article  CAS  Google Scholar 

  32. A.G. Pelmenshchikov, E.A. Paukshtis, V.G. Stepanov, V.I. Pavlov, E.N. Yurchenko, K.G. Ione, S. Beran et al., Scattering vector dependence of mutual diffusion coefficients for rodlike mlcelles in aqueous sodlum halide solutions. J. Phys. Chem. 93, 6720–6725 (1989)

    Article  Google Scholar 

  33. K.P. Schröder, J. Sauer, M. Leslie, C.R.A. Catlow, J.M. Thomas et al., Bridging hydroxyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites). Chem. Phys. Lett. 188, 320–325 (1992)

    Article  Google Scholar 

  34. K. Suzuki, T. Noda, N. Katada, M. Niwa et al., IRMS-TPD of ammonia: Direct and individual measurement of Brönsted acidity in zeolites and its relationship with the catalytic cracking activity. J. Catal. 250, 151–160 (2007)

    Article  CAS  Google Scholar 

  35. N. Katada, H. Igi, J.H. Kim, M. Niwa et al., Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J. Phys. Chem. B 101, 5969–5977 (1997)

    Article  CAS  Google Scholar 

  36. J.R. Anderson, K. Foger, T. Mole, R.A. Rajadhyaksha, J.V. Sanders et al., Reactions on ZSM-5-type zeolite catalysts. J. Catal. 58, 114–130 (1979)

    Article  CAS  Google Scholar 

  37. V.S. Nayak, V.R. Choudhary et al., Acid strength distribution and catalytic properties of H-ZSM-5: effect of deammoniation conditions of \({\text{ NH }}_{4}\)-ZSM-5. J. Catal. 81, 26–45 (1983)

    Article  CAS  Google Scholar 

  38. D. Atkinson, G. Curthoys et al., The acidity of solid surfaces and its determination by amine titration and adsorption of coloured indicators. Chem. Soc. Rev. 8, 475–479 (1979)

    Article  CAS  Google Scholar 

  39. B.S. Umansky, W.K. Hall et al., A spectrophotometric study of the acidity of some solid acids. J. Catal. 124, 97–108 (1990)

    Article  CAS  Google Scholar 

  40. D. Farcasiu, A. Ghenciu et al., Acidity functions from \(^{13}\)C-NMR. J. Am. Chem. Soc. 115, 10901–10908 (1993)

    Article  CAS  Google Scholar 

  41. E.P. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371–379 (1963)

    Article  CAS  Google Scholar 

  42. C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993)

    Article  CAS  Google Scholar 

  43. O. Cairon, T. Chevreau et al., Quantitative FTIR studies of hexagonal and cubic faujasites by pyridine and CO adsorption. J. Chem. Soc. Faraday Trans. 94, 323–330 (1998)

    Article  CAS  Google Scholar 

  44. R. Borade, A. Sayari, A. Adnot, S. Kaliaguine et al., Characterization of acidity in ZSM-5 zeolites: an X-ray photoelectron and IR spectroscopy study. J. Phys. Chem. 94, 5989–5994 (1990)

    Article  CAS  Google Scholar 

  45. C. Guimon, A. Boreave, G. Pfister-Guillouzo et al., Study of the bulk and surface acidity of protonated Y zeolites by TPD and XPS. Surf. Interface Anal. 22, 407–411 (1994)

    Article  CAS  Google Scholar 

  46. A. Auroux, Acidity characterization by microcalorimetry and relationship with reactivity. Top. Catal. 4, 71–89 (1997)

    Article  CAS  Google Scholar 

  47. A. Auroux, Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 19, 205–213 (2002)

    Article  CAS  Google Scholar 

  48. A. Auroux, in Acidity and Basicity: Determination by Adsorption Microcalorimetry, vol. 6. Molecular Sieves-Science and Technology: Acidity and Basicity, (Springer, Berlin, 2000), pp. 46–154.

    Google Scholar 

  49. N. Cardona-Martinez, J.A. Dumesic et al., Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv. Catal. 38, 149–244 (1992)

    Article  CAS  Google Scholar 

  50. V. Solinas, I. Ferino et al., Microcalorimetric characterization of acid-basic catalysts. Catal. Today 41, 179–189 (1998)

    Article  CAS  Google Scholar 

  51. A. Auroux, Thermal methods: calorimetry, differential thermal analysis and thermogravimetry, in Thermal Methods in Catalysts Characterization, ed. by B. Imelik, J.C. Vedrine (Plenum Press, New York, 1994), pp. 611–650

    Chapter  Google Scholar 

  52. Lj. Damjanović, A. Auroux, Heterogeneous catalysis on solids, in Handbook of Thermal Analysis and Calotimetry, vol. 5, ed. by M.E. Brown, P.K. Gallagher (Elsevier, Amsterdam, 2008), pp. 387–438.

    Google Scholar 

  53. A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995)

    Article  CAS  Google Scholar 

  54. P.B. Weisz, Zeolites-new horizons in catalysis. Chemtech 3, 498–505 (1973)

    CAS  Google Scholar 

  55. P.B. Weisz, V.J. Frilette et al., Intercrystalline and molecular-shape-selective catalysis by zeolite salts. J. Phys. Chem. 64, 382 (1960)

    Article  CAS  Google Scholar 

  56. W.O. Haag, R.M. Lago, P.B. Weisz et al., Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discuss. Chem. Soc. 72, 317–331 (1982)

    Article  CAS  Google Scholar 

  57. V.J. Frilette, W.O. Haag, R.M. Lago et al., Catalysis by crystalline aluminosilicates: characterization of intermediate pore-size zeolites by the “Constraint Index”. J. Catal. 67, 218–222 (1981)

    Article  Google Scholar 

  58. S.M. Csicsery, In: J.A. Rabo (eds), Zeolite chemistry and catalysis . ACS Symposium series 171, 680–701 (1976)

    Google Scholar 

  59. S.M. Csicsery, Shape-selective catalysis in zeolites. Zeolites 4, 202–213 (1984)

    Article  CAS  Google Scholar 

  60. S.M. Csicsery, The reactions of 1-methyl-2-ethylbenzene I. Exploring the structure of intracrystalline void space and the catalytic properties of molecular sieves and other catalysts. J. Catal. 108, 433–443 (1987)

    CAS  Google Scholar 

  61. E.G. Derouane, Shape selectivity in catalysis by zeolites: the nest effect. J. Catal. 100, 541–544 (1986)

    Article  CAS  Google Scholar 

  62. E.G. Derouane, New aspects of molecular shape-selectivity: catalysis by zeolite ZSM - 5. Stud. Surf. Sci. Catal. 4, 5–18 (1980)

    Article  Google Scholar 

  63. E.G. Derouane, Molecular shape-selective catalysis in Zeolites - Selected topics. Stud. Surf. Sci. Catal. 19, 1–17 (1984)

    Article  CAS  Google Scholar 

  64. J. Dwyer, Uses of natural zeolites. Chem. Ind. 7, 241–245 (1984)

    Google Scholar 

  65. P.A. Jacobs, J.A. Martens et al., Exploration of the void size and structure of zeolites and molecular sieves using chemical reactions. Stud. Surf. Sci. Catal. 28, 23–32 (1986)

    Article  CAS  Google Scholar 

  66. U. Hammon, G.T. Kokotailo, L. Riekert, J.Q. Zhou et al., Deactivation of dealuminated zeolite Y in the catalytic cracking of n-hexane. Zeolites 8, 338–339 (1988)

    Article  CAS  Google Scholar 

  67. E.G. Derouane, Z. Gabelica et al., A novel effect of shape selectivity: molecular traffic control in zeolite ZSM-5. J. Catal. 65, 486–489 (1980)

    Article  CAS  Google Scholar 

  68. J. Kärger, D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992)

    Google Scholar 

  69. J. Datka, M. Boczar, P. Rymarowicz et al., Heterogeneity of OH groups in NaH-ZSM-5 zeolite studied by infrared spectroscopy. J. Catal. 114, 368–376 (1988)

    Article  CAS  Google Scholar 

  70. A. Chatterjee, T. Iwasaki, T. Ebina, H. Tsuruya, T. Kanougi, Y. Oumi, M. Kubo, A. Miyamoto et al., Effects of structural characteristics of zeolites on the properties of their bridging and terminal hydroxyl groups. Appl. Surf. Sci. 130–132, 555–560 (1998)

    Article  Google Scholar 

  71. J. Sauer, Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts. Chem. Rev. 89, 199–255 (1989)

    Article  CAS  Google Scholar 

  72. J. Sauer, C.M. Kölmel, J.R. Hill, R. Ahlrichs et al., Brönsted sites in zeolitic catalysts. An ab initio study of local geometries and of the barrier for proton jumps between neighbouring sites. Chem. Phys. Lett. 164, 193–198 (1989)

    CAS  Google Scholar 

  73. J.B. Nicholas, R.E. Winans, R.J. Harrison, L.E. Iton, L.A. Curtiss, A.J. Hopfinger et al., Ab initio molecular orbital study of the effects of basis set size on the calculated structure and acidity of hydroxyl groups in framework molecular sieves. J. Phys. Chem. 96, 10247–10257 (1992).

    Google Scholar 

  74. J. Limatrakul, S. Hannongbua et al., Catalytic properties of a free hydroxyl on a silica, a zeolite, and modified zeolites: quantum-chemical calculations. J. Mol. Struc. (Theochem) 280, 139–145 (1993)

    Article  Google Scholar 

  75. R. Carson, E.M. Cooke, J. Dwyer, A. Hinchliffe, P.J. O’Malley, Molecular orbital calculations of structural and acidic characteristics of aluminophosphates (AlPO), silicoaluminophosphates (SAPO) and metaluminophosphate (MeAPO) based molecular sieves. Stud. Surf. Sci. Catal. 46, 39–48 (1989)

    Article  Google Scholar 

  76. D.J. Parrillo, R.J. Gorte et al., Characterization of acidity in H-ZSM-5, H-ZSM-12, H-mordenite, and H-Y using microcalorimetry. J. Phys. Chem. 97, 8786–8792 (1993)

    Article  CAS  Google Scholar 

  77. D.J. Parrillo, C. Lee, R.J. Gorte et al., Heats of adsorption for ammonia and pyridine in H-ZSM-5: evidence for identical Brönsted-acid sites. Appl. Catal. A 110, 67–74 (1994)

    Article  CAS  Google Scholar 

  78. M. Huang, S. Kaliaguine, A. Auroux et al., Crystallinity dependence of Lewis acidity and Lewis basicity in Na zeolites. J. Phys. Chem. 99, 9952–9959 (1995)

    Article  Google Scholar 

  79. M. Huang, S. Kaliaguine, A. Auroux et al., Lewis basic and Lewis acidic sites in zeolites. Stud. Surf. Sci. Catal. 97, 311–318 (1995)

    Article  CAS  Google Scholar 

  80. M. Huang, A. Auroux, S. Kaliaguine et al., Crystallinity dependence of acid site distribution in HA. HX and HY zeolites. Micropor. Mater. 5, 17–27 (1995)

    Article  CAS  Google Scholar 

  81. C.V. McDaniel, P.K. Maher et al., In: J.A. Rabo (eds). Zeolite chemistry and catalysis . ACS Symposium series 171, 171–180 (1976)

    Google Scholar 

  82. M.A. Camblor, A. Corma, S. Valencia et al., Spontaneous nucleation and growth of pure silica zeolite-P free of connectivity defects, Chem. Commun. 2365–2366 (1996).

    Google Scholar 

  83. M.A. Camblor, A. Corma, A. Mifsud, J. Perez-Pariente, S. Valencia et al., Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations. Stud. Surf. Sc. Catal. 105, 341–348 (1997)

    Article  Google Scholar 

  84. P.A. Jacobs, R. von Ballmoos et al., Framework hydroxyl groups of H-ZSM-5 zeolites. J. Phys. Chem. 86, 3050–3052 (1982)

    Article  CAS  Google Scholar 

  85. T.J. Gricus Kofke, R.J. Gorte, W.E. Farneth et al., Stoichiometric adsorption complexes in H-ZSM-5. J. Catal. 114, 34–45 (1988)

    Article  Google Scholar 

  86. T.J. Gricus Kofke, R.J. Gorte, G.T. Kokotailo, W.E. Farneth et al., Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites. J. Catal. 115, 265–272 (1989)

    Article  Google Scholar 

  87. A.I. Biaglow, D.J. Parrillo, R.J. Gorte et al., Characterization of H. Na-Y using amine desorption. J. Catal. 144, 193–201 (1993)

    CAS  Google Scholar 

  88. K. Tsutsumi, K. Nishimiya et al., Differential molar heats of adsorption of ammonia on silicious mordenites at high temperature. Thermochim. Acta. 143, 299–309 (1989)

    Article  CAS  Google Scholar 

  89. A. Auroux, P.C. Gravelle, J.C. Védrine, M. Rekas, in Proc 5th Int Zeolite Conf, Naples, Italy, June 2–6, 1980, ed. by L.V.C. Rees (LV, Heyden, London, 1980), pp. 433–438

    Google Scholar 

  90. H. Stach, J. Jänchen, U. Lohse et al., Relationship between acid strength and framework aluminium content in dealuminated faujasites. Catal. Lett. 13, 389–393 (1992)

    Article  CAS  Google Scholar 

  91. A. Auroux, Y. Ben Taarit et al., Calorimetric investigation of the effect of dealumination on the acidity of zeolites. Thermochim. Acta. 122, 63–70 (1987)

    Article  CAS  Google Scholar 

  92. Y. Mitani, K. Tsutsumi, H. Takahashi et al., Direct measurement of the interaction energy between solids and gases. XI. Calorimetric measurements of acidities of aluminum deficient H-Y zeolites. Bull. Chem. Soc. Jpn. 56, 1921–1923 (1983)

    CAS  Google Scholar 

  93. A.I. Biaglow, D.J. Parrillo, G.T. Kokotailo, R.J. Gorte et al., A study of dealuminated faujasites. J. Catal. 148, 213–223 (1994)

    Article  CAS  Google Scholar 

  94. I.V. Mishin, A.L. Klyachko, T.R. Brueva, O.P. Tkachenko, H.K. Beyer et al., Composition, acidity and catalytic activity of high silica fujasites. Kinet. Catal. 34, 502–508 (1993)

    Google Scholar 

  95. D. Barthomeuf, Aluminium topological density and correlations with acidic and catalytic properties of zeolites. Stud. Surf. Sci. Catal. 38, 177–186 (1987)

    Article  CAS  Google Scholar 

  96. H. Stach, J. Jänchen, H.G. Jerschkewitz, U. Lohse, B. Parlitz, M. Hunger et al., Mordenite acidity: dependence on the silicon/aluminum ratio and the framework aluminum topology. 2 Acidity investigations. J. Phys. Chem. 96, 8480–8485 (1992)

    Article  CAS  Google Scholar 

  97. A. Macedo, A. Auroux, F. Raatz, E. Jacquinot, R. Boulet et al., Strong acid sites of dealuminated Y zeolites prepared by conventional treatments and isomorphous substitution. ACS Symp. Ser. 368, 98–104 (1988)

    Article  CAS  Google Scholar 

  98. J.C. Védrine, A. Auroux, G. Coudurier, Catalytic materials, relationship between structure and reactivity. ACS Symp. Ser. 248(13), 254 (1984)

    Google Scholar 

  99. J.C. Védrine, A. Auroux, V. Bolis, P. Dejaifve, C. Naccache, P. Wierzchowski, E.G. Derouane, J.C.H. van Hoff et al., Infrared, microcalorimetric, and electron spin resonance investigations of the acidic properties of the H-ZSM-5 zeolite. J. Catal. 59, 248–262 (1979)

    Article  Google Scholar 

  100. H.G. Karge, L.C. Jozefowicz et al., A comparative study of the acidity of various zeolites using the differential heats of ammonia adsorption as measured by high-vacuum microcalorimetry. Stud. Surf. Sci. Catal. 84, 685–692 (1994)

    Article  CAS  Google Scholar 

  101. L.C. Jozefowicz, H.G. Karge, E.N. Coker et al., Microcalorimetric investigation of H-ZSM-5 zeolites using an ultrahigh-vacuum system for gas adsorption. J. Phys. Chem. 98, 8053–8060 (1994)

    Article  CAS  Google Scholar 

  102. D.T. Chen, S.B. Sharma, I. Filimonov, J.A. Dumesic et al., Microcalorimetric studies of zeolite acidity. Catal. Lett. 12, 201–211 (1992)

    Article  CAS  Google Scholar 

  103. G.I. Kapustin, L.M. Kustov, G.O. Glonti, T.R. Brueva, V.Y. Borovkov, A.L. Klyachko, A.M. Rubinshtein, V.B. Kazanskii et al., A microcalorimetric study of \({\text{ NH }}_{3}\) adsorption on H. Na-mor catalysts. Kinet. Katal. 25, 959–964 (1984)

    Google Scholar 

  104. I. Bankós, J. Valyon, G.I. Kapustin, D. Kallo, A.L. Klyachko, T.R. Brueva et al., Acidic and catalytic properties of hydrogen sodium mordenite. Zeolites 8, 189–195 (1988)

    Article  Google Scholar 

  105. H.G. Karge, H.K. Beyer, Solid-state ion exchange in microporous and mesoporous materials, in Molecular Sieves-Science and Technology, vol. 3, ed. by H.G. Karge, J. Weitkamp (Springer, New York, 2002).

    Google Scholar 

  106. H. Garcia, H.D. Roth et al., Generation and reactions of organic radical cations in zeolites. Chem. Rev. 102, 3947–4008 (2002)

    Article  CAS  Google Scholar 

  107. I.V. Mishin, A.L. Klyachko, G.I. Kapustin, H.G. Karge et al., The effect of exchange degrees on the heterogeneity of acid sites in decationated mordenites. Kinet. Katal. 34, 828–834 (1993)

    Google Scholar 

  108. I.V. Mishin, A.L. Klyachko, T.R. Brueva, V.D. Nissenbaum, H.G. Karge et al., Effect of the exchange degree on the heterogeneity of acid sites of decationed zeolites. Kinet. Catal. 34, 835–840 (1993)

    Google Scholar 

  109. M. Muscas, J.F. Dutel, V. Solinas, A. Auroux, Y. Ben Taarit et al., A dynamic assessment of MFI acidity using microcalorimetric techniques. J. Mol. Catal. A 106, 169–175 (1996)

    Article  CAS  Google Scholar 

  110. M. Huang, S. Kaliaguine, M. Muscas, A. Auroux et al., Microcalorimetric characterization of the basicity in alkali-exchanged X zeolites. J. Catal. 157, 266–269 (1995)

    Article  CAS  Google Scholar 

  111. A. Auroux, P. Artizzu, I. Ferino, R. Monaci, E. Rombi, V. Solinas et al., Conversion of 4-methylpentan-2-ol over alkali-metal ion-exchanged X and Y zeolites: a microcalorimetric and catalytic investigation. Micropor. Mater. 11, 117–126 (1997)

    Article  CAS  Google Scholar 

  112. R.M. Barrer, Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982)

    Google Scholar 

  113. R. Szostak, Molecular Sieves: Principle of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989)

    Google Scholar 

  114. T. Chapus, A. Tuel, Y. Ben Taarit, C. Naccache et al., Synthesis and characterization of a chromium silicalite-1. Zeolites 14, 349–355 (1994)

    Article  CAS  Google Scholar 

  115. K.G. Ione, L.A. Vostrikova, V.M. Mastikin et al., Synthesis of crystalline metal silicates having zeolite structure and study of their catalytic properties. J. Mol. Catal. 31, 355–370 (1985)

    Article  CAS  Google Scholar 

  116. K.G. Ione, L.A. Vostrikova et al., The isomorphism and catalytic properties of silicates with the zeolite structure. Uspechi. Chimii. 56, 231–252 (1987)

    Google Scholar 

  117. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaka, New York, 1967).

    Google Scholar 

  118. F. Liebau, Structural Chemistry of Silicates (Springer, Berlin, 1985)

    Book  Google Scholar 

  119. M. Sayed, A. Auroux, J.C. Védrine et al., The effect of boron on ZSM-5 zeolite shape selectivity and activity: II. Coincorporation of aluminium and boron in the zeolite lattice. J. Catal. 116, 1–10 (1989)

    CAS  Google Scholar 

  120. G. Coudurier, A. Auroux, J.C. Védrine, R.D. Farlee, L. Abrams, R.D. Shannon et al., Properties of boron-substituted ZSM-5 and ZSM-11 zeolites. J. Catal. 108, 1–14 (1987)

    Article  CAS  Google Scholar 

  121. M.L. Occelli, H. Eckert, A. Wölker, A. Auroux et al., Crystalline galliosilicate molecular sieves with the beta structure. Micropor. Mesopor. Mat. 30, 219–232 (1999)

    Article  CAS  Google Scholar 

  122. M.L. Occelli, H. Eckert, C. Hudalla, A. Auroux, P. Ritz, P.S. Iyer et al., Acidic properties of galliosilicate molecular sieves with the offretite structure. Stud. Surf. Sci. Catal. 105, 1981–1987 (1997).

    Google Scholar 

  123. M.L. Occelli, G. Schwering, C. Fild, H. Eckert, A. Auroux, P.S. Iyer et al., Galliosilicate molecular sieves with the faujasite structure. Micropor. Mesopor. Mat. 34, 15–22 (2000)

    Article  CAS  Google Scholar 

  124. H. Eckert, C. Hudalla, A. Wölker, A. Auroux, M.L. Occelli et al., Synthesis and structural characterization of mixed aluminum-gallium-offretites. Solid State NMR 9, 143–153 (1997)

    Article  Google Scholar 

  125. M.L. Occelli, A.E. Schweizer, C. Fild, G. Schwering, H. Eckert, A. Auroux et al., Gallioaluminosilicate molecular sieves with the faujasite structure. J. Catal. 192, 119–127 (2000)

    Article  CAS  Google Scholar 

  126. B. Ducourty, M.L. Occelli, A. Auroux et al., Processes of ammonia adsorption in gallium zeolites as studied by microcalorimetry. Thermochim. Acta 312, 27–32 (1998)

    Article  CAS  Google Scholar 

  127. E. Dumitriu, V. Hulea, I. Fechete, C. Catrinescu, A. Auroux, J.F. Lacaze, C. Guimon et al., Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure. Appl. Catal. A Gen. 181, 15–28 (1999)

    Article  CAS  Google Scholar 

  128. D.J. Parrillo, C. Lee, R.J. Gorte, D. White, W.E. Farneth et al., Comparison of the acidic properties of H-[Al]ZSM-5, H-[Fe]ZSM-5, and H-[Ga]ZSM-5 using microcalorimetry, hexane cracking, and propene oligomerization. J. Phys. Chem. 99, 8745–8749 (1995)

    Article  CAS  Google Scholar 

  129. E. Dumitriu, V. Hulea, I. Fechete, A. Auroux, J.F. Lacaze, C. Guimon et al., The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Micropor. Mesopor. Mat. 43, 341–359 (2001)

    Article  CAS  Google Scholar 

  130. J. Kotrla, L. Kubelkova, C.C. Lee, R.J. Gorte, Calorimetric and FTIR studies of acetonitrile on H-[Fe]ZSM-5 and H-[Al]ZSM-5. J. Phys. Chem. B 102, 1437–1443 (1998)

    Article  CAS  Google Scholar 

  131. A. Auroux, A. Tuel, J. Bandiera, J.M. Guil et al., Calorimetric and catalytic investigation of alkanes reactivity over a variety of MFI structures. Appl. Catal. 93, 181–190 (1993)

    Article  CAS  Google Scholar 

  132. J. Jänchen, G. Vorbeck, H. Stach, B. Parlitz, J.H.C. van Hooff et al., Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. Stud. Surf. Sci. Catal. 94, 108–115 (1995)

    Article  Google Scholar 

  133. G. Vorbeck, J. Jänchen, B. Parlitz, M. Schneider, R. Fricke et al., Synthesis and characterization of crystalline indosilicates with the MFI structure. J. Chem. Soc. Chem. Com. 123–124 (1994).

    Google Scholar 

  134. M. Muscas, V. Solinas, S. Gontier, A. Tuel, A. Auroux et al., Microcalorimetry studies of the acidic properties of titanium-silicalites-1. Stud. Surf. Sci. Catal. 94, 101–107 (1995)

    Article  CAS  Google Scholar 

  135. A. Auroux, A. Gervasini, E. Jorda, A. Tuel et al., Acidic properties of titanium-silicalites-1. Stud. Surf. Sci. Catal. 84, 653–659 (1994)

    Article  CAS  Google Scholar 

  136. V. Bolis, S. Bordiga, C. Lamberti, A. Zecchina, A. Carati, F. Rivetti, G. Spano, G. Petrini et al., A calorimetric, IR, XANES and EXAFS study of the adsorption of \({\text{ NH }}_{3}\) on Ti-silicalite as a function of the sample pre-treatment. Micropor. Mater. 30, 67–76 (1999)

    Article  CAS  Google Scholar 

  137. V. Bolis, S. Bordiga, C. Lamberti, A. Zecchina, A. Carati, F. Rivetti, G. Spano, G. Petrini et al., Heterogeneity of framework Ti(IV) in Ti-silicalite as revealed by the adsorption of \({\text{ NH }}_{3}\). Combined calorimetric and spectroscopic study. Langmuir 15, 5753–5764 (1999)

    CAS  Google Scholar 

  138. I.V. Mishin, T.R. Brueva, G.I. Kapustin et al., Heats of adsorption of ammonia and correlation of activity and acidity in heterogeneous catalysis. Adsorption 11, 415–424 (2005)

    Article  CAS  Google Scholar 

  139. C.P. Nicolaides, H.H. Kung, N.P. Makgoba, N.P. Sincadu, M.S. Scurrell et al., Characterization by ammonia adsorption microcalorimetry of substantially amorphous or partially crystalline ZSM-5 materials and correlation with catalytic activity. Appl. Catal. A Gen. 223, 29–33 (2002)

    Article  CAS  Google Scholar 

  140. S.M. Babitz, M.A. Kuehne, H.H. Kung, J.T. Miller et al., Role of Lewis acidity in the deactivation of USY zeolites during 2-methylpentane cracking. Ind. Eng. Chem. Res. 36, 3027–3031 (1997)

    Article  CAS  Google Scholar 

  141. A.G. Gayubo, P.L. Benito, A.T. Aguayo, M. Olazar, J. Bilbao et al., Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion. J. Chem. Tech. Biotechnol. 65, 183–191 (1996)

    Article  Google Scholar 

  142. M.A. Kuehne, H.H. Kung, J.T. Miller et al., Effect of steam dealumination on H-Y acidity and 2-methylpentane cracking activity. J. Catal. 171, 293–304 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Stošić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stošić, D., Auroux, A. (2013). Characterization of Acid–Base Sites in Zeolites. In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_9

Download citation

Publish with us

Policies and ethics