Skip to main content

Temperature-Programmed Desorption (TPD) Methods

  • Chapter
  • First Online:
Calorimetry and Thermal Methods in Catalysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

Abstract

This chapter presents the fundamentals, the experimental setups and the applications of temperature-programmed desorption (TPD), method used to investigate the events that take place at the surface of solid material while its temperature is changed in a controlled manner. At the beginning, fundamental principles of adsorption and desorption phenomena, as well as the data concerning first experimental setups are given. Further, important information related to the construction of nowadays used equipment and the organization of common experiments are underlined. The significance of data directly obtained from temperature-programmed experiment—TPD profile, which are the area under it and the position of peak maximum, are highlighted. Particular attention is given to the results that can be derived from these data—characterization of active sites that can be found on the surface of solid material and determination of kinetic and thermodynamic parameters of desorption process. In this regard, the influence of important experimental parameters on derived values is explained. Besides, the distinctions between TPD experiments performed in ultra-high vacuum and in the flow systems (differences in experimental setups and in the derivation of kinetic and thermodynamic parameters) are explained. Also, the modification of temperature-programmed techniques, known as temperature-programmed oxidation and temperature-programmed reduction are shortly explained and compared with temperature-programmed desorption method. In the end, a brief comparison of the TPD and adsorption calorimetry, two most widely used techniques for the study of acid/base properties of catalysts, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Significant difference in heating rates makes main distinction between “flash desorption”, where the heating rate is very high (the desired temperature is reached in seconds) and temperature-programmed desorption (where the sample is heated in minutes or even hours).

  2. 2.

    TPD is perhaps the most often used for estimation of acid/base properties of solid catalysts.

  3. 3.

    Dissociative chemisorption of a diatomic molecule can also happen through the dissociation in a gas phase and a creation of two gas phase atoms; these two atomic species can be then adsorbed on the surface (this way is almost always non-activated). If the curves describing molecular and atomic adsorption intersect at or below the zero potential energy line, then the precursor physisorbed molecule can experience non-activated dissociation, followed by chemisorption (Fig. 4.1a). In contrast, if the energetic for these two pathways are such that the intersection occurs above the zero energy plane, then chemisorption will be activated with activation energy, E\(_{ad}\), as indicated in Fig. 4.1b.

  4. 4.

    Instead to define equilibrium by constant surface coverage, it is possible to keep constant pressure at the surface; in that case the equilibrium heat of adsorption \(q_{eq}\) is incorporated in Clausius-Clapeyron equation.

  5. 5.

    In those cases, the consumption of either reductive or oxidative gas by the catalyst is derived from the change in thermal conductivity of the gas mixture.

  6. 6.

    If catharometer is used as detector, it is very important to remove traces of water or any other impurities from the gas flows, because they would affect the thermal conductivity measurements.

References

  1. P.A. Redhead, Thermal desorption of gases. Vacuum 12, 203–211 (1962). doi:10.1016/0042-207X(62)90978-8

    Google Scholar 

  2. G. Ehrlich, Modern Methods in surface kinetics: flash desorption, field emission microscopy, and ultrahigh vacuum techniques. Adv. Catal. 14, 255–427 (1963). doi:10.1016/S0360-0564(08)60341-7

  3. R.J. Cvetanović, Y. Amenomiya, Application of temperature-programmed dessorption technique to catalyst studies. Adv. Catal. 17, 103–149 (1967). doi:10.1016/S0360-0564(08)60686-0

    Google Scholar 

  4. R.J. Cvetanović, Y. Amenomiya, A temperature programmed desorption technique for investigation of practical catalysts. Catal. Rev. 6, 21–48 (1972). doi:10.1080/01614947208078690

    Google Scholar 

  5. I. Chorkendorff, J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003)

    Book  Google Scholar 

  6. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids, Principles Methodology and Applications (Academic Press, San Diego, 1999)

    Google Scholar 

  7. D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984)

    Google Scholar 

  8. M.A. Vannice, Kinetics of Catalytic Reactions (Springer Science Business Media, Inc., New York, 2005)

    Book  Google Scholar 

  9. Lj. Damjanović, A. Auroux, Determination of acid/base properties by temperature-programmed desorption (TPD) and adsorption calorimetry, in Zeolite Chemistry and Catalysis: An Integrated Approach and Tutorial, ed. by A.W. Chester, E.G. Derouane (Springer, Heidelberg, 2009)

    Google Scholar 

  10. J.M. Kanervo, T.J. Keskitalo, R.I. Slioor, A.O.I. Krause, Temperature-programmed desorption as a tool to extract quantitative kinetic or energetic information for porous catalysts. J. Catal. 238, 382–393 (2006). doi:10.1016/j.jcat.2005.12.026

    Google Scholar 

  11. V. Rakić, V. Dondur, U. Mioč, D. Jovanović, Microcalorimetry in the identification and characterization of the most reactive active sites of heterogeneous catalysts. Top Catal. 19, 241–247 (2002). doi:10.1023/A:1015328526702

    Google Scholar 

  12. Dj. Stojaković, N. Rajić, V. Rakić, N. Zabukovec Logar, V. Kaučić, Structure and thermal behavior of the layered zincophosphate [\({\rm NH}_{3}{-}{\rm CH}_{2}{-}{\rm CH}({\rm NH}_{3}){-}{\rm CH}_{3}\)](\({\rm ZnPO}_{4})_{2}\). Inorg. Chim. Acta. 362, 1991–1995 (2009). doi:10.1016/j.ica.2008.09.020

  13. B. Brunner, Solid state NMR–a powerful tool for the investigation of surface hydroxyl groups in zeolites and their interactions with adsorbed probe molecules. J. Mol. Struct. 355, 61–85 (1995). doi:10.1016/0022-2860(95)08867-U

    Article  CAS  Google Scholar 

  14. D. Delahay, Méthodes en température programmée, in Les matériaux micro et mésoporeux, Charactérisation. ed. by F. Thibault-Starzyk, Groupe français des zéolithes, (EDP sciences, Les Ulis, France, 2004)

    Google Scholar 

  15. S. Bennici, A. Auroux, Thermal analysis and calorimetric methods, in Metal Oxide Catalysis, eds. by S.D. Jackson, J.S.J. Hargreaves (Wiley, New York, 2009)

    Google Scholar 

  16. G.A. Somorjai, Modern surface science and surface technologies: an introduction. Chem. Rev. 96, 1223–1236 (1996). doi:10.1021/cr950234e

    Article  CAS  Google Scholar 

  17. W.E. Farneth, R.J. Gorte, Methods for analyzing zeolite acidity. Chem. Rev. 95, 615–635 (1995). doi:10.1021/cr00035a007

    Google Scholar 

  18. A. Corma, Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995). doi:10.1021/cr00035a006

    Article  CAS  Google Scholar 

  19. J. Weitkamp, U. Weis, E. Ernst, New aspects and trends in zeolite catalysis, in Catalysis by Microporous Materials, Studies in Surface Science and Catalysis, vol. 94, eds. by H.K. Beyer, H.G. Karge, I. Kiricsi, J.B. Nagy (Elsevier, Amsterdam), p. 363

    Google Scholar 

  20. V. Solinas, I. Ferino, Microcalorimetric characterisation of acid-base catalysts. Catal. Today. 41, 179–189 (1998). doi:10.1016/S0920-5861(98)00048-0

    Article  CAS  Google Scholar 

  21. A. Auroux, Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top Catal. 19, 205–213 (2002). doi:10.1023/A:1015367708955

    Article  CAS  Google Scholar 

  22. A. Auroux, Innovation in zeolite materials science, in Proceedings of the International Sumposium on Studies in Surface Science and Catalysis, Nieuwpoort, vol. 37 (Elsevier, Amsterdam, 1988), 13–17 September 1987, eds. by P.J. Grobet, W.J. Mortier, E.F. Vansant, G.G Schulz-Eklo, p. 385

    Google Scholar 

  23. A. Zecchina, S. Bordiga, G. Spoto, L. Marchese, G. Pterini, G. Leofanti, M. Padovan, Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. J. Phys. Chem. 96, 4991–4997 (1992). doi:10.1021/j100191a048

    Article  CAS  Google Scholar 

  24. M.A. Makarova, K.M. Al-Gefaili, J. Dwyer, Brönsted acid strength in US-Y: FTIR study of CO adsorption. J. Chem. Soc. Faraday Trans. 90, 383–386 (1994). doi:10.1039/FT9949000383

    Article  CAS  Google Scholar 

  25. Y. Kuroda, T. Mori, Y. Yoshikawa, S. Kittaba, R. Kumashiro, M. Nagao, What are the important factors determining the state of copper ion on various supports? Analysis using spectroscopic methods and adsorption calorimetry. Phys. Chem. Chem. Phys. 1, 3807–3816 (1999). doi:10.1039/A904754I

    Article  CAS  Google Scholar 

  26. E. Garrone, B. Fubini, B. Bonelli, B. Onida, C.O. Arean, Thermodynamics of CO adsorption on the zeolite Na-ZSM-5 A combined microcalorimetric and FTIR spectroscopic study. Phys. Chem. Chem. Phys. 1, 513–518 (1999). doi:10.1039/A806973E

    Article  CAS  Google Scholar 

  27. J. Sauer, Acidic sites in heterogeneous catalysis: structure, properties and activity. J. Mol. Catal. 54, 312–323 (1989). doi:10.1016/0304-5102(89)80149-X

    Article  CAS  Google Scholar 

  28. P.A. Jacobs, Carboniogenic Activity of Zeolites (Elsevier Scientific Publishing Company, Amsterdam, 1977)

    Google Scholar 

  29. E. Selli, L. Forni, Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine. Microporous Mesoporous Mater. 31, 129–140 (1999). doi:10.1016/S1387-1811(99)00063-3

    Article  CAS  Google Scholar 

  30. J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, A.A. Romero, Characterization of acidity in AlPO\(_{4}\)-Al\(_{2}\)O\(_{3}\) (5–15 wt% Al\(_{2}\)O\(_{3})\) catalysts using pyridine temperature-programmed desorption. Thermochim. Acta. 265, 103–110 (1995). doi: 10.1016/0040-6031(95)02379-G

    Article  CAS  Google Scholar 

  31. H.G. Karge, V. Dondur, J. Weitkamp, Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites. J. Phys. Chem. 95, 283–288 (1991). doi:10.1021/j100154a053

    Article  CAS  Google Scholar 

  32. H. Matsuhashi, K. Arata, Temperature-programmed desorption of argon for evaluation of surface acidity of solid superacids. Chem. Commun. 387–388, (2000). doi:10.1039/A909844E

  33. H.G. Karge, V. Dondur, Investigation of the distribution of acidity in zeolites by temperature-programmed desorption of probe molecules. I. Dealuminate mordenites. J. Phys. Chem. 94, 765–772 (1990). doi:10.1021/j100365a047

    Article  CAS  Google Scholar 

  34. J. Wilson, H. Guo, R. Morales, E. Podgornov, I. Lee, F. Zaera, Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces. Phys. Chem. Chem. Phys. 9, 3830–3852 (2007). doi:10.1039/B702652H

    Google Scholar 

  35. N. Katada, H. Igi, J.-H. Kim, M. Niwa, Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J. Phys. Chem. B. 101, 5969–5977 (1997). doi:10.1021/jp9639152

    Article  CAS  Google Scholar 

  36. S. Narayanan, A. Sultana, Q.T. Le, A. Auroux, A comparative and multitechnical approach to the acid character of templated and non-templated ZSM-5 zeolites. Appl. Catal A-Gen. 168, 373–384 (1998). doi:10.1016/S0926-860X(97)00368-2

    Article  CAS  Google Scholar 

  37. V. Rac, V. Rakić, S. Gajinov, V. Dondur, A. Auroux, Room-temperature interaction of n-hexane with ZSM-5 zeolites. Microcalorimetric and temperature-programmed desorption studies. J. Therm. Anal. Cal. 84, 239–245 (2006). doi:10.1007/s10973-005-7164-z

    Article  CAS  Google Scholar 

  38. A. Auroux, R. Monaci, E. Rombi, V. Solinas, A. Sorrentino, E. Santacesaria, Acid sites investigation of simple and mixed oxides by TPD and microcalorimetric techniques. Thermochim. Acta. 379, 227–231 (2001). doi:10.1016/S0040-6031(01)00620-7

    Article  CAS  Google Scholar 

  39. A. Tanksale, J.N. Beltramini, J.A. Dumesic, G.Q. Lu, Effect of Pt and Pd promoter on Ni supported catalysts–A TPR/TPO/TPD and microcalorimetry study. J. Catal. 258, 366–377 (2008). doi:10.1016/j.jcat.2008.06.024

    Article  CAS  Google Scholar 

  40. K. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957). doi:10.1021/ac60131a045

    Article  CAS  Google Scholar 

  41. R.J. Gorte, Design parameters for temperature programmed desorption from porous catalysts. J. Catal. 75, 164–174 (1982). doi:10.1016/0021-9517(82)90131-2

    Article  CAS  Google Scholar 

  42. R.A. Demmin, R.J. Gorte, Design parameters for temperature-programmed desorption from a packed bed. J. Catal. 90, 32–39 (1984). doi:10.1016/0021-9517(84)90081-2

    Article  CAS  Google Scholar 

  43. R.J. Gorte, Temperature-programmed desorption for the characterization of oxide catalysts. Catal. Today 28, 405–414 (1996). doi:10.1016/S0920-5861(96)00249-0

    Article  CAS  Google Scholar 

  44. D.A.M. Monti, A. Baiker, Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. J. Catal. 83, 323–335 (1983). doi:10.1016/0021-9517(83)90058-1

    Article  CAS  Google Scholar 

  45. J. Shen, A. Auroux, The determination of acidity in fluid cracking catalysts (FCCs) from adsorption microcalorimetry of probe molecules, in Proceedings of International Symposium on Fluid Catalytic Cracking VI, Preparation and Characterization of Catalysts, New York, 7–11 September 2003, eds. by M. Occelli, p. 35. Studies in Surface Science and Catalysis, vol. 149, pp. 35–70 (2004). doi:10.1016/S0167-2991(04)80756-0

  46. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997). doi: 10.1021/cr960406n

    Google Scholar 

  47. A. Auroux, Acidity and basicity, in Molecular Sieves- Science and Technology, vol. 6. ( Springer, Berlin, 2008), p. 45

    Google Scholar 

  48. Y. Mitani, K. Tsutsumi, H. Takahashi, Direct measurement of the interaction energy between solids and gases. XI. Calorimetric measurements of acidities of aluminium deficient H-Y zeolites. Bull. Chem. Soc. Japan. 56, 1921–1923 (1983). doi:10.1246/bcsj.56.1921

    Article  CAS  Google Scholar 

  49. A. Auroux, Y. Ben Taarit, Calorimetric investigation of the effect of dealumination on the acidity of zeolites. Thermochim. Acta. 122, 63–70 (1987). doi:10.1016/0040-6031(87)80105-3

    Article  CAS  Google Scholar 

  50. A. Auroux, P.C. Gravelle, J.C. Védrine, M. Rekas, in Proceedings of the 5th International Conference on Zeolite, Naples, 2–6 June 1980, ed. by L.V.C. Rees, L.V. Heyden, p. 433

    Google Scholar 

  51. H.G. Karge, L.C. Jozefowicz, A comparative study of the acidity of various zeolites using the differential heats of ammonia adsorption as measured by high-vacuum microcalorimetry, in Proceedings of the 10th International Conference on Zeolites and Related Microporous Materials: State of the Art 1994, Garmisch-Partenkirchen, Elsevier, Amsterdam, 17–22 July 1994, eds. by J. Weitkamp, H.G. Karge, H. Pfeifer, Hö.W. lderich, p. 685 . Studies in Surface Science and Catalysis, vol. 84, pp. 685–692 (1994). doi:10.1016/S0167-2991(08)64174-9

  52. M. Calatayud, A. Markovits, C. Minot, Electron-count control on adsorption upon reducible and irreducible clean metal-oxide surfaces. Catal. Today 89, 269–278 (2004). doi:10.1016/j.cattod.2003.12.015

    Article  CAS  Google Scholar 

  53. Lj. Damjanović, A. Auroux, Heterogeneous catalysis on solids, in The Handbook of Thermal Analysis and Calorimetry. Further advances, techniques and applications, vol. 5, ed. by M. Brown, P. Gallagher (Elsevier, Amsterdam, 2008)

    Google Scholar 

  54. M. Niwa, N. Katada, Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catal. Surv. Japan. 1, 215–226 (1997). doi:10.1023/A:1019033115091

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Rakić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rakić, V., Damjanović, L. (2013). Temperature-Programmed Desorption (TPD) Methods. In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_4

Download citation

Publish with us

Policies and ethics