Skip to main content

Adsorption/Desorption of Simple Pollutants

  • Chapter
  • First Online:
Calorimetry and Thermal Methods in Catalysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

  • 4416 Accesses

Abstract

This text reviews the possibilities to apply microcalorimetry and thermo-analytical methods of analysis in the fields related to the environment pollution. At the beginning, short overview of chemical species that can be found as common pollutants in the atmosphere, waters and soils is given. Further, it is shown how the mentioned techniques can be applied for direct investigation of some event that includes specific pollutants. The possibilities to use calorimetry and thermo-analytical methods for the characterization of substances used either as adsorbents or catalysts in the processes of pollutants’ abatement are presented. Besides, it is shown how all mentioned methods can provide data useful in the removal of certain pollutant. The importance of microcalorimetry and thermo-analytical methods in environment protection is underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.G. Robertson, Abatement of nitrous oxide, methane, and the other non-CO\(_{2}\) greenhouse gases: the need for a systems approach, in Global Carbon Cycle, Scientific Committee on Problem of the Environment - SCOPE 62, ed. by C.B. Field, M.R. Raupach (Island Press, Washington, DC, 2004)

    Google Scholar 

  2. R.G. Prinn, Non-CO\(_{2}\) greenhouse gases, in Global Carbon Cycle, Scientific Committee on Problem of the Environment - SCOPE 62, ed. by C.B. Field, M.R. Raupach (Island Press, Washington, DC, 2004)

    Google Scholar 

  3. M. Dalla Valle, E. Codato, A. Marcomini, Climate change influence on POPs distribution and fate: a case study. Chemosphere 67, 1287–1295 (2007). doi:10.1016/j.chemosphere.2006.12.028

    Article  CAS  Google Scholar 

  4. P.F. Verdes, Global warming is driven by anthropogenic emissions: a time series analysis approach. Phys. Rev. Lett. 99, 048501-1–048501-4 (2007). doi:10.1103/PhysRevLett.99.048501

    Google Scholar 

  5. J.C. Kramlich, W.P. Linak, Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems. Prog. Energy. Combust 20, 149–202 (1994). doi:10.1016/0360-1285(94)90009-4

    Article  CAS  Google Scholar 

  6. S. Seitzinger, C. Kroeze, R. Styles, Global distribution of N\(_{2}\)O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere Glob. Change Sci. 2, 267–279 (2000). doi: 10.1016/S1465-9972(00)00015-5

    Article  CAS  Google Scholar 

  7. Y. Kamata, A. Matsunami, K. Kitagawa, N. Arai, FFT analysis of atmospheric trace concentration of N\(_{2}\)O continuously monitored by gas chromatography and cross-correlation to climate parameters. Microchem. J. 71, 83–93 (2002). doi: 10.1016/S0026-265X(01)00140-0

    Article  CAS  Google Scholar 

  8. D.A. Sarigiannis, S.P. Karakitsios, A. Gotti, I.L. Liakos, A. Katsoyiannis, Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ. Int. 37, 743–765 (2011). doi:10.1016/j.envint.2011.01.005

    Article  CAS  Google Scholar 

  9. D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 163, 287–303 (2012). doi:10.1016/j.envpol.2011.12.034

    Article  CAS  Google Scholar 

  10. S.T. Glassmeyer, D.W. Kolpin, E.T. Furlong, M.J. Focazio, Environmental presence and persistence of pharmaceuticals: an overview, in Fate of Pharmaceuticals in the Environment and in Water Treatment Systems, ed. by D.S. Aga (CRC Press, Taylor & Francis Group, Boca Raton, 2008)

    Google Scholar 

  11. S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem. Rev. 107, 2319–2364 (2007). doi:10.1021/cr020441w

    Article  CAS  Google Scholar 

  12. J.D. Meeker, Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 66, 236–241 (2010). doi:10.1016/j.maturitas.2010.03.001

    Article  CAS  Google Scholar 

  13. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments. J. Hazard. Mater. 160, 265–288 (2008). doi:10.1016/j.jhazmat.2008.03.045

    Article  CAS  Google Scholar 

  14. V. Rakic, L.J. Damjanovic, The adsorption of nicotine from aqueous solutions on different zeolite structures. Water. Res. 44, 2047–2057 (2010). doi:10.1016/j.watres.2009.12.019

    Article  CAS  Google Scholar 

  15. C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 52, 403–415 (2007). doi:10.1016/j.seppur.2006.06.009

    Article  CAS  Google Scholar 

  16. K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interfac 140, 114–131 (2008). doi:10.1016/j.cis.2007.12.008

    Article  CAS  Google Scholar 

  17. N. Rajic, D.J. Stojakovic, Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. J. Hazard. Mater. 172, 1450–1457 (2009). doi:10.1016/j.jhazmat.2009.08.011

    Article  CAS  Google Scholar 

  18. R.J. Willson, Calorimetry, in Principles of thermal analysis and calorimetry, ed. by P.J. Haines (The Royal Society of Chemistry, Cambridge, 2002)

    Google Scholar 

  19. G.A. Urban, T. Weiss, Hydrogels for biosensors, in Hydrogel Sensors and Actuators, Springer Series on Chemical Sensors and Biosensors Volume 6, ed. by G. Gerlach, K.F. Arndt (Springer-Verlag, Berlin, 2010)

    Google Scholar 

  20. Lj Damjanovic, A. Auroux, Determination of acid/base properties by temperature programmed desorption (TPD) and adsorption calorimetry, in Zeolite Chemistry and Catalysis: An Integrated Approach and Tutorial, ed. by A.W. Chester, E.G. Derouane (Springer, Berlin, 2009)

    Google Scholar 

  21. F. Wang, J. Yao, Y. Si, H. Chen, M. Russel, K. Chen, Y. Qian, G. Zaray, E. Bramanti, Short-time effect of heavy metals upon microbial community activity. J. Hazard. Mater. 173, 510–516 (2010). doi:10.1016/j.jhazmat.2009.08.114

    Article  CAS  Google Scholar 

  22. A.G.S. Prado, C. Airoldi, The effect of the herbicide diuron on soil microbial activity. Pest. Manag. Sci. 57, 640–644 (2001). doi:10.1002/ps.321

    Article  CAS  Google Scholar 

  23. K.E. Giller, E. Witter, S.P. McGrath, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30, 1389–1414 (1998). doi:10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  24. A.G.S. Prado, C. Airoldi, Toxic effect caused on microflora of soil by pesticide picloram application. J. Environ. Monit. 3, 394–397 (2001). doi:10.1039/b103872a

    Article  CAS  Google Scholar 

  25. S.A.M. Critter, C. Airoldi, Application of calorimetry to microbial biodegradation studies of agrochemicals in oxisols. J. Environ. Qual. 30, 954–959 (2001)

    Article  CAS  Google Scholar 

  26. A. Tancho, R. Merckx, F. Schoovaerts, K. Vlassak, Relation between substrate induced respiration and heat loss from soil samples amended with various contaminants. Thermochim. Acta 251, 21–28 (1995). doi:10.1016/0040-6031(94)02044-O

    Article  CAS  Google Scholar 

  27. A.G.C. Prado, C. Airoldi, Effect of the pesticide 2, 4-D on microbial activity of the soil monitored by microcalorimetry. Thermochim. Acta 349, 17–22 (2000). doi:10.1016/S0040-6031(99)00492-X

    Article  CAS  Google Scholar 

  28. N. Barros, S. Feijóo, S. Fernández, Microcalorimetric determination of the cell specific heat rate in soils: relationship with the soil microbial population and biophysic significance. Thermochim. Acta 406, 161–170 (2003). doi:10.1016/S0040-6031(03)00255-7

    Article  CAS  Google Scholar 

  29. N. Barros, S. Feijóo, S. Fernández, J.A. Simoni, C. Airoldi, Application of the metabolic enthalpy change in studies of soil microbial activity. Thermochim. Acta 356, 1–7 (2000). doi:10.1016/S0040-6031(00)00495-0

    Article  CAS  Google Scholar 

  30. N. Barros, M. Gallego, S. Feijóo, Sensitivity of calorimetric indicators of soil microbial activity. Thermochim. Acta 458, 18–22 (2007). doi:10.1016/j.tca.2006.12.020

    Article  CAS  Google Scholar 

  31. H. Chen, J. Yao, Y. Zhou, H. Chen, F. Wang, N. Gai, R. Zhuang, B. Ceccanti, Th Maskow, G. Zaray, The toxic effect of cadmium on pure microbes using a microcalorimetric method and a biosensor technique. J. Environ. Sci. Health Part A 43, 1639–1649 (2008)

    Article  CAS  Google Scholar 

  32. F. Buchholz, L.Y. Wick, H. Harms, Th Maskow, The kinetics of polycyclic aromatic hydrocarbon (PAH) biodegradation assessed by isothermal titration calorimetry (ITC). Thermochim. Acta. 458, 47–53 (2007). doi:10.1016/j.tca.2007.01.028

    Article  CAS  Google Scholar 

  33. A.C. Dos Santos Pires, N. de Fátima Ferreira Soares , L.H.M. da Silva, N.J. de Andrade, Silveira MFA, A.F. de Carvalho, Polydiacetylene as a biosensor: fundamentals and applications in the food industry. Food Bioprocess Tech. 3, 172–181 (2010). doi:10.1007/s11947-008-0171-x

  34. M.L. Antonelli, L. Campanella, P. Ercole, Lichen-based biosensor for the determination of benzene and 2-chlorophenol: microcalorimetric and amperometric investigations. Anal. Bioanal. Chem. 381, 1041–1048 (2005). doi:10.1007/s00216-004-3014-2

    Article  CAS  Google Scholar 

  35. V. Solinas, I. Ferino, Microcalorimetric characterisation of acid-basic catalysts. Catal. Today 41, 179–189 (1998). doi:10.1016/S0920-5861(98)00048-0

    Article  CAS  Google Scholar 

  36. A. Auroux, Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 19, 205–213 (2002). doi:10.1023/A:1015367708955

    Article  CAS  Google Scholar 

  37. B. Gergely, A. Auroux, Calorimetric study of the adsorption of air pollutants on alumina-supported tin and gallium oxides. Res. Chem. Intermed. 25, 13–24 (1999)

    Article  CAS  Google Scholar 

  38. V. Rakic, V. Rac, A. Auroux, unpublished results

    Google Scholar 

  39. V. Rakic, V. Rac, V. Dondur, A. Auroux, Competitive adsorption of N\(_{2}\)O and CO on CuZSM-5, FeZSM-5, CoZSM-5 and bimetallic forms of ZSM-5 zeolite. Catal. Today 110, 272–280 (2005). doi: 10.1016/j.cattod.2005.09.027

    Article  CAS  Google Scholar 

  40. B. Dragoi, V. Rakic, E. Dumitriu, A. Auroux, Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J. Therm. Anal. Calorim. 99, 733–740 (2010). doi:10.1007/s10973-009-0353-4

    Article  CAS  Google Scholar 

  41. J.A. Perdigon-Melon, A. Gervasini, A. Auroux, Study of the influence of the In\(_{2}\)O\(_{3}\) loading on \(\gamma \) -alumina for the development of de-NOx catalysts. J. Catal. 234, 421–430 (2005). doi: 10.1016/j.jcat.2005.07.001

    Article  CAS  Google Scholar 

  42. S. Bennici, A. Auroux, Thermal analysis and calorimetric methods, in Metal Oxide Catalysis, ed. by S.D. Jackson, J.S.J. Hargreaves (Wiley, New York, 2009)

    Google Scholar 

  43. B. Dragoi, E. Dumitriu, C. Guimon, A. Auroux, Acidic and adsorptive properties of SBA-15 modified by aluminum incorporation. Microporous Mesoporous Mater. 121, 7–17 (2009). doi:10.1016/j.micromeso.2008.12.023

    Article  CAS  Google Scholar 

  44. K. Otsuka, Y. Wang, M. Nakamura, Direct conversion of methane to synthesis gas through gas-solid reaction using CeO\(_{2}\)-ZrO\(_{2 }\)solid solution at moderate temperature. Appl. Catal. A 183, 317–324 (1999). doi: 10.1016/S0926-860X(99)00070-8

    Article  CAS  Google Scholar 

  45. T. Yuzhakova, V. Rakić, C. Guimon, A. Auroux, Preparation and characterization of Me\(_{2}\)O\(_{3}\)-CeO\(_{2}\) (Me = B, Al, Ga, In) mixed-oxide catalysts. Chem. Mater. 19, 2970–2981 (2007). doi: 10.1021/cm062912r

    Article  CAS  Google Scholar 

  46. C. Martin, A. Perrard, J.P. Joly, F. Gaillard, V. Delecroix, Dynamic adsorption on activated carbons of SO\(_{2}\) traces in air I. Adsorption capacities. Carbon 40, 2235–2246 (2002)

    Article  CAS  Google Scholar 

  47. A. Abu, S. Smith, Mechanistic characterization of adsorption and slow desorption of Phenanthrene aged in soils. Environ. Sci. Technol. 40, 5409–5414 (2006). doi:10.1021/es060489h

    Article  CAS  Google Scholar 

  48. S. Preis, J.L. Falconer, R. del Prado Asensio, N.C. Santiago, A. Kachina, J. Kallas, Photocatalytic oxidation of gas-phase methyl tert-butyl ether and tert-butyl alcohol. Appl. Catal. B-Environ. 64, 79–87 (2006). doi:10.1016/j.apcatb.2005.11.002

  49. M. Ischia, C. Perazzolli, R. Dal Maschio, R. Campostrini, Pyrolysis study of sewage sludge by TG-MS and TG-GC-MS coupled analyses. J. Therm. Anal. Calorim. 87, 567–574 (2007). doi:10.1007/s10973-006-7690-3

    Google Scholar 

  50. H.J. Lehmler, W. Xie , G.D. Bothun, P.M. Bummer, B.L. Knutson (2006) Mixing of perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl phosphatidylcholine (DPPC). Colloid. Surf. B 51: 25–29. doi:10.1016/j.colsurfb.2006.05.013

  51. S. Gorinstein, S. Moncheva, F. Toledo, P. Arancibia-Avila, S. Trakhtenberg, A. Gorinstein, I. Goshev, J. Namiesnik, Relationship between seawater pollution and qualitative changes in the extracted proteins from mussels mytilus galloprovincialis. Sci. Total. Environ. 364, 251–259 (2006). doi:10.1016/j.scitotenv.2005.06.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Rakić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rakić, V. (2013). Adsorption/Desorption of Simple Pollutants . In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_10

Download citation

Publish with us

Policies and ethics