Skip to main content

Fundamentals in Adsorption at the Solid-Gas Interface. Concepts and Thermodynamics

  • Chapter
  • First Online:
Calorimetry and Thermal Methods in Catalysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

Abstract

Some fundamental concepts about the features of a solid material surface and the adsorption at the gas-solid interface are illustrated. The basic tools dealing with the thermodynamics aspects of adsorption processes are also discussed. The stepwise adsorption microcalorimetry technique, which is a tool of greatest quantitative merit in surface chemistry studies, is described in detail through a selection of gas-solid interface systems, taken from different materials science fields. Criteria for discriminating physical and chemical adsorption are given, based on the nature of the forces involved in the process and the heat of adsorption values. The molecular interpretation of the volumetric-calorimetric data, favored by the joint use of adsorption microcalorimetry, spectroscopic and/or ab initio modeling techniques, is also stressed by illustrating a number of examples dealing with either physical or associative/dissociative chemical adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim (Germany), 1997)

    Google Scholar 

  2. R.A. Van Santen, P.W.N.M. van Leeuwen, J.A. Moulijn, B.A. Averill, Catalysis an Integrated Approach. Studies in Surface Science and Catalysis, vol 123 (Elsevier, Amsterdam, 1999)

    Google Scholar 

  3. L.L. Hench, J. Wilson, Introduction to Bioceramics (World Scientific, Singapore, 1993)

    Book  Google Scholar 

  4. D.F. Williams, J. Black, P.J. Doherty, Advances in Biomaterials: Biomaterial-Tissue Interfaces, vol. 10 (Elsevier Science, Amsterdam, 1992)

    Google Scholar 

  5. B. Kasemo, Biological surface science. Curr. Opin. Solid State Mater. Sci. 3(5), 451–459 (1998). doi:10.1016/S1359-0286(98)80006-5

    Article  CAS  Google Scholar 

  6. B. Kasemo, Biological surface science. Surf. Sci. 500(1–3), 656–677 (2002). doi:10.1016/S0039-6028(01)01809-X

    Article  CAS  Google Scholar 

  7. R. Schlogl, in Handbook of Heterogeneous Catalysis, vol. 8, 2nd edn., ed. by G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp (Wiley-VCH Verlag, Weinheim, 2008)

    Google Scholar 

  8. G. Ertl, in Encyclopedia of Catalysis, vol. 1, ed. by J.T. Horvath (John Wiley & Sons, Hoboken, NJ, 2003), pp. 329–352

    Google Scholar 

  9. A. Zecchina, D. Scarano, S. Bordiga, G. Spoto, C. Lamberti, Surface structures of oxides and halides and their relationships to catalytic properties. Adv. Catal. 46, 265–397 (2001). doi:10.1016/S0360-0564(02)46024-5

    Article  CAS  Google Scholar 

  10. Gravelle PC, in Heat-Flow Microcalorimetry and Its Application to Heterogeneous Catalysis, ed. by D.D. Eley HP, Paul BW. Advances in Catalysis, vol 22 (Academic Press, 1972). pp. 191–263

    Google Scholar 

  11. V. Bolis, G. Della Gatta, B. Fubini, E. Giamello, L. Stradella, G. Venturello, Identification of surface sites on potentially catalytic solids by adsorption calorimetry. Gazz Chim Ital 112, 83–89 (1982)

    CAS  Google Scholar 

  12. B. Fubini, Adsorption Calorimetry in Surface-Chemistry. Thermochim. Acta 135, 19–29 (1988)

    Article  CAS  Google Scholar 

  13. N. Cardona-Martinez, J.A. Dumesic, Applications Of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv. Catal. 38, 149–244 (1992). doi:10.1016/s0360-0564(08)60007-3

    Article  CAS  Google Scholar 

  14. A. Auroux, Physical Techniques for Solid Materials (Plenum Press, New York, 1994)

    Google Scholar 

  15. V. Bolis, A. Cavenago, B. Fubini, Surface heterogeneity on hydrophilic and hydrophobic silicas: Water and alcohols as probes for H-bonding and dispersion forces. Langmuir 13(5), 895–902 (1997). doi:10.1021/la951006i

    Article  CAS  Google Scholar 

  16. V. Bolis, S. Bordiga, C. Lamberti, A. Zecchina, A. Carati, F. Rivetti, G. Spano, G. Petrini, Heterogeneity of framework Ti(IV) in Ti-silicalite as revealed by the adsorption of NH\(_{3}\). Combined calorimetric and spectroscopic study. Langmuir 15(18), 5753–5764 (1999). doi: 10.1021/la981420t

    Article  CAS  Google Scholar 

  17. V.A. Basiuk in Encyclopedia of Surface and Colloid Science, ed. by S. Ponisseril. Adsorption of Biomolecules at Silica, (Marcel Dekker, Inc., New York, 2002), p. 277

    Google Scholar 

  18. V. Bolis, B. Fubini, E. Garrone, C. Morterra, Thermodynamic and vibrational characterization of CO adsorption on variously pretreated anatase. J. Chem. Soc. Faraday Trans. I 85, 1383–1395 (1989). doi:10.1039/f19898501383

    Article  CAS  Google Scholar 

  19. C. Morterra, V. Bolis, B. Fubini, L. Orio, T.B. Williams, A Ftir and Hrem study of some morphological and adsorptive properties of Monoclinic ZrO\(_{2}\) microcrystals. Surf. Sci. 251, 540–545 (1991). doi: 10.1016/0039-6028(91)91051-X

    Article  Google Scholar 

  20. V. Bolis, G. Magnacca, C. Morterra, Surface properties of catalytic aluminas modified by alkaline-earth metal cations: a microcalorimetric and IR-spectroscopic study. Res. Chem. Intermed. 25(1), 25–56 (1999). doi:10.1163/156856799X00374

    Article  CAS  Google Scholar 

  21. V. Bolis, S. Maggiorini, L. Meda, F. D’Acapito, G.T. Palomino, S. Bordiga, C. Lamberti, X-ray photoelectron spectroscopy and x-ray absorption near edge structure study of copper sites hosted at the internal surface of ZSM-5 zeolite: A comparison with quantitative and energetic data on the CO and NH\(_{3}\) adsorption. J. Chem. Phys. 113(20), 9248–9261 (2000). doi: 10.1063/I.1319318

    Article  CAS  Google Scholar 

  22. E. Garrone, V. Bolis, B. Fubini, C. Morterra, Thermodynamic and spectroscopic characterization of heterogeneity among adsorption Sites—CO on anatase at ambient-temperature. Langmuir 5(4), 892–899 (1989). doi:10.1021/la00088a002

    Article  CAS  Google Scholar 

  23. V. Bolis, A. Barbaglia, S. Bordiga, C. Lamberti, A. Zecchina, Heterogeneous nonclassical carbonyls stabilized in Cu(I)- and Ag(I)-ZSM-5 zeolites: Thermodynamic and spectroscopic features. J. Phys. Chem. B 108(28), 9970–9983 (2004). doi:10.1021/Jp049613e

    Article  CAS  Google Scholar 

  24. V. Bolis, C. Busco, S. Bordiga, P. Ugliengo, C. Lamberti, A. Zecchina, Calorimetric and IR spectroscopic study of the interaction of NH\(_{3}\) with variously prepared defective silicalites—Comparison with ab initio computational data. Appl. Surf. Sci. 196(1–4), 56–70 (2002). doi: 10.1016/S0169-4332(02)00046-6

    Article  CAS  Google Scholar 

  25. V. Bolis, C. Busco, P. Ugliengo, Thermodynamic study of water adsorption in high-silica zeolites. J. Phys. Chem. B 110(30), 14849–14859 (2006). doi:10.1021/Jp061078q

    Article  CAS  Google Scholar 

  26. V. Bolis, C. Busco, V. Aina, C. Morterra, P. Ugliengo, Surface properties of silica-based biomaterials: Ca species at the surface of amorphous silica as model sites. J. Phys. Chem. C 112(43), 16879–16892 (2008). doi:10.1021/Jp805206z

    Article  CAS  Google Scholar 

  27. M. Corno, A. Rimola, V. Bolis, P. Ugliengo, Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules. Phys. Chem. Chem. Phys. 12(24), 6309–6329 (2010). doi:10.1039/C002146f

    Article  CAS  Google Scholar 

  28. M. Armandi, V. Bolis, B. Bonelli, C.O. Arean, P. Ugliengo, E. Garrone, Silanol-Related and Unspecific Adsorption of Molecular Ammonia on Highly Dehydrated Silica. J. Phys. Chem. C 115(47), 23344–23353 (2011). doi:10.1021/Jp206301c

    Article  CAS  Google Scholar 

  29. V. Bolis, C. Busco, G. Martra, L. Bertinetti, Y. Sakhno, P. Ugliengo, F. Chiatti, M. Corno, N. Roveri, Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H\(_{2}\)O and CO. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 370(1963), 1313–1336 (2012). doi: 10.1098/rsta.2011.0273

    Article  CAS  Google Scholar 

  30. G. Attard, C. Barnes (1998) Surfaces. Oxford Chemistry Primers N. 59 (Oxford Science Publications, Oxford, 1998)

    Google Scholar 

  31. I.M. Campbell, Catalysis at Surfaces (Chapman and Hall, London and New York, 1988)

    Book  Google Scholar 

  32. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982)

    Google Scholar 

  33. J.A. Rabo, Zeolites Chemistry and Catalysis, vol. 171 (ACS Monograph American Chemical Society, Washington, D.C., 1976)

    Google Scholar 

  34. D.W. Breck, Zeolites Molecular Sieves, vol. 4 (John Wiley, New York, 1974)

    Google Scholar 

  35. W.M. Meier, D.H. Olson Atlas of Zeolites Structure Types, 2nd edn. (Butterworths, London, 1993)

    Google Scholar 

  36. E.M. Flanigen, J.M. Bennett, R.W. Grose, J.P. Cohen, R.L. Patton, R.M. Kirchner, J.V. Smith, Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271(5645), 512–516 (1978)

    Article  CAS  Google Scholar 

  37. W.O. Haag, R.M. Lago, P.B. Weisz, The active site of acidic aluminosilicate catalysts. Nature 309(5969), 589–591 (1984). doi:10.1038/309589a0

    Article  CAS  Google Scholar 

  38. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6), 2373–2419 (1997). doi:10.1021/cr960406n

    Article  CAS  Google Scholar 

  39. A. Corma, State of the art and future challenges of zeolites as catalysts. J. Catal. 216(1–2), 298–312 (2003). doi:10.1016/s0021-9517(02)00132-x

    Article  CAS  Google Scholar 

  40. E. Garrone, B. Fubini, B. Bonelli, B. Onida, C.O. Arean, Thermodynamics of CO adsorption on the zeolite Na-ZSM-5—a combined microcalorimetric and FTIR spectroscopic study. Phys. Chem. Chem. Phys. 1(4), 513–518 (1999). doi:10.1039/a806973e

    Article  CAS  Google Scholar 

  41. C. Morterra, V. Bolis, E. Fisicaro, The hydrated layer and the adsorption of CO at the surface of TiO\(_{2}\) (Anatase). Colloids Surf. 41(1–2), 177–188 (1989). doi: 10.1016/0166-6622(89)80051-4

    Article  CAS  Google Scholar 

  42. C. Morterra, G. Magnacca, V. Bolis, On the critical use of molar absorption coefficients for adsorbed species: the methanol/silica system. Catal. Today 70(1–3), 43–58 (2001). doi:10.1016/S0920-5861(01)00406-0

    Article  CAS  Google Scholar 

  43. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940). doi:10.1021/ja01864a025

    Article  CAS  Google Scholar 

  44. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938). doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  45. S. Brunauer, The Adsorption of Gases and Vapours (Oxford University Press, Oxford, 1945)

    Google Scholar 

  46. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  47. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976). doi:10.1107/S0567739476001551

    Article  Google Scholar 

  48. B. Fubini, V. Bolis, A. Cavenago, P. Ugliengo, Ammonia and water as probes for the surface reactivity of covalent solids—cristobalite and silicon-carbide. J. Chem. Soc., Faraday Trans. 88(3), 277–290 (1992). doi:10.1039/ft9928800277

    Article  CAS  Google Scholar 

  49. B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, Structural and induced heterogeneity at the surface of some SiO\(_{2}\) polymorphs from the enthalpy of adsorption of various molecules. Langmuir 9(10), 2712–2720 (1993). doi: 10.1021/la00034a034

    Article  CAS  Google Scholar 

  50. P.C. Gravelle, Application of adsorption calorimetry to the study of heterogeneous catalysis reactions. Thermochim. Acta 96(2), 365–376 (1985). doi:10.1016/0040-6031(85)80075-7

    Article  CAS  Google Scholar 

  51. G. Della Gatta, Direct determination of adsorption heats. Thermochim. Acta 96(2), 349–363 (1985). doi:10.1016/0040-6031(85)80074-5

    Article  CAS  Google Scholar 

  52. A. Auroux, Acidity characterization by microcalorimetry and relationship with reactivity. Top. Catal. 4(1–2), 71–89 (1997). doi:10.1023/A:1019127919907

    Article  CAS  Google Scholar 

  53. B. Fubini, Rev. Gen. Thermique 18, 297 (1979)

    CAS  Google Scholar 

  54. J.A. Dunne, M. Rao, S. Sircar, R.J. Gorte, A.L. Myers, Calorimetric heats of adsorption and adsorption isotherms.2. O\(_{2}\), N\(_{2}\), Ar, CO\(_{2}\), CH\(_{4}\), C\(_{2}\)H\(_{6}\), and SF\(_{6}\) on NaX, H-ZSM-5, and Na-ZSM-5 zeolites. Langmuir 12(24), 5896–5904 (1996)

    Article  CAS  Google Scholar 

  55. V. Bolis, G. Cerrato, G. Magnacca, C. Morterra, Surface acidity of metal oxides. Combined microcalorimetric and IR-spectroscopic studies of variously dehydrated systems. Thermochim. Acta 312(1–2), 63–77 (1998). doi:10.1016/S0040-6031(97)00440-1

    Article  CAS  Google Scholar 

  56. Fubini B, Bolis V, Bailes M, Stone FS (1989) The reactivity of oxides with water vapor. Solid State Ionics 32–33, (Part 1 (0))258–272. doi:10.1016/0167-2738(89)90230-0

  57. J.M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B.D. Gruyter, Structural characterization of zeolite beta. Proc. R. Soc. Lond. Math. Phys. Sci. 420(1859), 375–405 (1988). doi:10.1098/rspa.1988.0131

    Article  CAS  Google Scholar 

  58. M.M. Huang, A. Auroux, S. Kaliaguine, Crystallinity dependence of acid site distribution in HA, HX and HY Zeolites. Microporous Mater. 5(1–2), 17–27 (1995). doi:10.1016/0927-6513(95)00028-8

    CAS  Google Scholar 

  59. A.L. Blumenfeld, J.J. Fripiat, Acid sites topology in aluminas and zeolites from high-resolution solid-state NMR. Top. Catal. 4(1–2), 119–129 (1997). doi:10.1023/A:1019119718089

    Article  CAS  Google Scholar 

  60. C. Otero Arean, G. Turnes Palomino, E. Escalona Platero, M. Penarroya Mentruit, Zeolite-supported metal carbonyls: sensitive probes for infrared spectroscopic characterization of the zeolite surface. J. Chem. Soc., Dalton Trans. 5, 873–880 (1997). doi:10.1039/A604775K

    Article  Google Scholar 

  61. M. Bregolato, V. Bolis, C. Busco, P. Ugliengo, S. Bordiga, F. Cavani, N. Ballarini, L. Maselli, S. Passeri, I. Rossetti, L. Forni, Methylation of phenol over high-silica beta zeolite: effect of zeolite acidity and crystal size on catalyst behaviour. J. Catal. 245(2), 285–300 (2007). doi:10.1016/j.jcat.2006.10.024

    Article  CAS  Google Scholar 

  62. V. Bolis, S. Bordiga, G.T. Palomino, A. Zecchina, C. Lamberti, Calorimetric and spectroscopic study of the coordinative unsaturation of copper(I) and silver(I) cations in ZSM-5 zeolite - Room temperature adsorption of NH3. Thermochim. Acta 379(1–2), 131–145 (2001). doi:10.1016/S0040-6031(01)00612-8

    Article  CAS  Google Scholar 

  63. C. Morterra, A. Chiorino, G. Ghiotti, E. Fisicaro, Spectroscopic study of anatase properties. Part 5—Surface modifications caused by K\(_{2}\)O addition. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condensed Phases 78(9), 2649–2659 (1982). doi: 10.1039/F19827802649

    CAS  Google Scholar 

  64. C. Morterra, G. Ghiotti, E. Garrone, E. Fisicaro, Spectroscopic study of anatase properties. Part 3—Surface acidity. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condensed Phases 76, 2102–2113 (1980). doi:10.1039/F19807602102

    CAS  Google Scholar 

  65. M. Cerruti, G. Magnacca, V. Bolis, C. Morterra, Characterization of sol-gel bioglasses with the use of simple model systems: a surface-chemistry approach. J. Mater. Chem. 13(6), 1279–1286 (2003). doi:10.1039/B300961k

    Article  CAS  Google Scholar 

  66. E.P.L. Hunter, S.G. Lias, Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data 27(3), 413–656 (1998)

    Article  CAS  Google Scholar 

  67. A. Auroux, Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 19(3–4), 205–213 (2002). doi:10.1023/A:1015367708955

    Article  CAS  Google Scholar 

  68. W.E. Farneth, R.J. Gorte, Methods for characterizing zeolite acidity. Chem. Rev. 95(3), 615–635 (1995). doi:10.1021/cr00035a007

    Article  CAS  Google Scholar 

  69. A. Zecchina, Otero Arean C (1996) Diatomic molecular probes for mid-IR studies of zeolites. Chem. Soc. Rev. 25 (3):187–197. doi:10.1039/cs9962500187.

    Google Scholar 

  70. A. Zecchina, C. Lamberti, S. Bordiga, Surface acidity and basicity: general concepts. Catal. Today 41(1–3), 169–177 (1998). doi:10.1016/S0920-5861(98)00047-9

    Article  CAS  Google Scholar 

  71. R.J. Gorte, What we do know about the acidity of solid acids? Catal. Lett. 62, 1–13 (1999)

    Article  CAS  Google Scholar 

  72. C. Otero Arean, E. Garrone, Trends in infrared spectroscopy of zeolites. Trends Inorg. Chem. 7, 119–133 (2001)

    Google Scholar 

  73. V. Bolis, M. Broyer, A. Barbaglia, C. Busco, G.M. Foddanu, P. Ugliengo, Van der Waals interactions on acidic centres localized in zeolites nanocavities: a calorimetric and computer modeling study. J. Mol. Catal. A: Chem. 204, 561–569 (2003). doi:10.1016/S1381-1169(03)00339-X

    Article  Google Scholar 

  74. C. Busco, A. Barbaglia, M. Broyer, V. Bolis, G.M. Foddanu, P. Ugliengo, Characterisation of Lewis and Bronsted acidic sites in H-MFI and H-BEA zeolites: a thermodynamic and ab initio study. Thermochim. Acta 418(1–2), 3–9 (2004). doi:10.1016/j.tca.2003.11.050

    Article  CAS  Google Scholar 

  75. A. Poppl, T. Rudolf, D. Michel, A pulsed electron nuclear double resonance study of the Lewis acid site nitric oxide complex in zeolite H-ZSM-5. J. Am. Chem. Soc. 120(19), 4879–4880 (1998). doi:10.1021/ja9741685

    Article  Google Scholar 

  76. R.D. Shannon, K.H. Gardner, R.H. Staley, G. Bergeret, P. Gallezot, A. Auroux, The nature of the nonframework aluminum species formed during the dehydroxylation of H-Y. J. Phys. Chem. 89(22), 4778–4788 (1985). doi:10.1021/j100268a025

    Article  CAS  Google Scholar 

  77. P.A. Jacobs, H.K. Beyer, Evidence for the nature of true Lewis sites in faujasite-type zeolites. J. Phys. Chem. 83(9), 1174–1177 (1979). doi:10.1021/j100472a013

    Article  CAS  Google Scholar 

  78. C. Busco, V. Bolis, P. Ugliengo, Masked Lewis sites in proton-exchanged zeolites: a computational and microcalorimetric investigation. J. Phys. Chem. C 111(15), 5561–5567 (2007). doi:10.1021/Jp0705471

    Article  CAS  Google Scholar 

  79. H. Willner, F. Aubke, Homoleptic metal carbonyl cations of the electron-rich metals: their generation in superacid media together with their spectroscopic and structural characterization. Angewandte Chemie-Int Ed. Engl. 36(22), 2403–2425 (1997). doi:10.1002/anie.199724021

    Google Scholar 

  80. A.J. Lupinetti, S.H. Strauss, G. Frenking, Nonclassical metal carbonyls. Prog. Inorg. Chem. 49, 1–112 (2001). doi:10.1002/9780470166512.ch1

    Article  CAS  Google Scholar 

  81. M. Armandi, B. Bonelli, I. Bottero, C.O. Arean, E. Garrone, Thermodynamic features of the reaction of ammonia with the acidic proton of H-ZSM-5 as studied by variable-temperature IR Spectroscopy. J. Phys. Chem. C 114(14), 6658–6662 (2010). doi:10.1021/Jp100799k

    Article  CAS  Google Scholar 

  82. E.G. Derouane, C.D. Chang, Confinement effects in the adsorption of simple bases by zeolites. Microporous Mesoporous Mater. 35–6, 425–433 (2000)

    Article  Google Scholar 

  83. L. Yang, K. Trafford, O. Kresnawahjuesa, J. Sepa, R.J. Gorte, D. White, An examination of confinement effects in high-silica zeolites. Russ. J. Phys. Chem. B 105(10), 1935–1942 (2001). doi:10.1021/jp002964i

    CAS  Google Scholar 

  84. R.J. Gorte, D. White, Measuring sorption effects at zeolite acid sites: pursuing ideas from W.O. Haag. Microporous Mesoporous Mater. 35–36, 447–455 (2000)

    Article  Google Scholar 

  85. V. Bolis, B. Fubini, L. Marchese, G. Martra, D. Costa, Hydrophilic and hydrophobic sites on dehydrated crystalline and amorphous silicas. J. Chem. Soc., Faraday Trans. 87(3), 497–505 (1991). doi:10.1039/ft9918700497

    Article  CAS  Google Scholar 

  86. V. Bolis, C. Morterra, M. Volante, L. Orio, B. Fubini, Development and suppression of surface-acidity on monoclinic zirconia—a spectroscopic and calorimetric investigation. Langmuir 6(3), 695–701 (1990). doi:10.1021/la00093a028

    Article  CAS  Google Scholar 

  87. V. Bolis, B. Fubini, E. Garrone, E. Giamello, C. Morterra, in Studies in Surface Science and Catalysis: Structure and Reactivity of Surfaces , vol. 48, ed. by C. Morterra, A. Zecchina, G. Costa (Elsevier Sci. Publ. B.V., Amsterdam, 1989), pp. 159–166

    Google Scholar 

  88. V. Solinas, I. Ferino, Microcalorimetric characterisation of acid-basic catalysts. Catal. Today 41(1–3), 179–189 (1998). doi:10.1016/S0920-5861(98)00048-0

    Article  CAS  Google Scholar 

  89. V. Bolis, A. Barbaglia, M. Broyer, C. Busco, B. Civalleri, P. Ugliengo, Entrapping molecules in zeolites nanocavities: a thermodynamic and ab-initio study. Orig. Life Evol. Biosph. 34(1–2), 69–77 (2004). doi:10.1023/B:ORIG.0000009829.11244.d1

    Article  CAS  Google Scholar 

  90. S. Bordiga, I. Roggero, P. Ugliengo, A. Zecchina, V. Bolis, G. Artioli, R. Buzzoni, G. Marra, F. Rivetti, G. Spano, C. Lamberti, Characterisation of defective silicalites. J. Chem. Soc., Dalton Trans. 21, 3921–3929 (2000). doi:10.1039/B004794p

    Article  Google Scholar 

  91. E. Garrone, F. Rouquerol, B. Fubini, G. Della Gatta, Entropy of adsorption and related thermodynamic functions in an open isothermal system. J Chim Phys 76, 528–532 (1979)

    CAS  Google Scholar 

  92. C. Otero Arean, O.V. Manoilova, G.T. Palomino, M.R. Delgado, A.A. Tsyganenko, B. Bonelli, E. Garrone, Variable-temperature infrared spectroscopy: an access to adsorption thermodynamics of weakly interacting systems. Phys. Chem. Chem. Phys. 4(23), 5713–5715 (2002). doi:10.1039/B209299a

    Article  CAS  Google Scholar 

  93. S. Savitz, A.L. Myers, R.J. Gorte, Calorimetric investigation of CO and N\(_{2}\) for characterization of acidity in zeolite H-MFI. J. Phys. Chem. B 103(18), 3687–3690 (1999). doi: 10.1021/jp990157h

    Article  CAS  Google Scholar 

  94. D. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1986)

    Google Scholar 

  95. D.H. Everett, Thermodynamics of adsorption. Part I—General considerations. Trans. Faraday Soc. 46, 453–459 (1950)

    Article  CAS  Google Scholar 

  96. T.L. Hill, Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption. J. Chem. Phys. 17(6), 520–535 (1949). doi:10.1063/1.1747314

    Article  CAS  Google Scholar 

  97. E. Garrone, G. Ghiotti, E. Giamello, B. Fubini, Entropy of adsorption by microcalorimetry. Part 1—Quasi-ideal chemisorption of CO onto various oxidic systems. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condensed Phases 77(11), 2613–2620 (1981)

    CAS  Google Scholar 

  98. G. Busca, H. Saussey, O. Saur, J.C. Lavalley, V. Lorenzelli, Ft-Ir Characterization of the surface-acidity of different titanium-dioxide anatase preparations. Appl. Catal. 14(1–3), 245–260 (1985). doi:10.1016/S0166-9834(00)84358-4

    CAS  Google Scholar 

  99. F. Rouquerol, J. Rouquerol, C. Letoquart, Use of isothermal microcalorimetry data for the determination of integral molar entropies of adsorption at the gas–solid interface by a quasi-equilibrium procedure. Thermochim. Acta 39(2), 151–158 (1980). doi:10.1016/0040-6031(80)80008-6

    Article  CAS  Google Scholar 

  100. H. Knozinger, The Hydrogen Bond (North Holland, Amsterdam, 1976)

    Google Scholar 

  101. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)

    Article  CAS  Google Scholar 

  102. V. Bolis, B. Fubini, E. Giamello, Effect of form on the surface-chemistry of finely divided solids. Mater. Chem. Phys. 29(1–4), 153–164 (1991). doi:10.1016/0254-0584(91)90012-J

    Article  CAS  Google Scholar 

  103. L. Kieu, P. Boyd, H. Idriss, Trends within the adsorption energy of alcohols over rutile TiO\(_{2}\)(110) and (011) clusters. J. Mol. Catal. A: Chem. 188(1–2), 153–161 (2002). doi: 10.1016/S1381-1169(02)00210-8

    Article  CAS  Google Scholar 

  104. A.C. Zettlemoyer, F.T. Micale, K. Klier, Water in dispersed Systems, vol. 5 (Plenum, New York, 1975)

    Google Scholar 

  105. S. Savitz, A.L. Myers, R.J. Gorte, A calorimetric investigation of CO, N\(_{2}\), and O\(_{2}\) in alkali-exchanged MFI. Microporous Mesoporous Mater. 37(1–2), 33–40 (2000). doi: 10.1016/S1387-1811(99)00190-0

    Article  CAS  Google Scholar 

  106. J.E. Jones, On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. Ser. A 106(738), 463–477 (1924). doi:10.1098/rspa.1924.0082

    Article  CAS  Google Scholar 

  107. P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review 34(1), 57–64 (1929). doi:10.1098/rspa.1924.0082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Bice Fubini (University of Torino) teachings in the early stage of my work in adsorption microcalorimetry are greatly acknowledged. Further, I would like to acknowledge the contribution of Dr Claudia Busco (zeolites work, University Piemonte Orientale “A. Avogadro”) and Dr Valentina Aina (Ca-modified silica work, University of Torino) in collecting the volumetric-calorimetric data published in the quoted references and employed to describe the use of adsorption microcalorimetry in surface chemistry studies. Without their enthusiasm and helpful contribution much of this work would not have been carried out. Mr Raffaele Disa (Disa Raffaele e F.lli s.a.s - Milano, I) is also greatly acknowledged for the endless, patient help in building up and maintaining the high-vacuum volumetric line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Bolis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bolis, V. (2013). Fundamentals in Adsorption at the Solid-Gas Interface. Concepts and Thermodynamics. In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_1

Download citation

Publish with us

Policies and ethics