Skip to main content

Exploiting Inactive Rename Slots for Detecting Soft Errors

  • Conference paper
  • 746 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5974))

Abstract

Register renaming is a widely used technique to remove false data dependencies in superscalar datapaths. Rename logic consists of a table that holds a physical register mapping for each architectural register and a logic for checking intra-group dependencies. This logic checking consists of a number of comparators that compares the values of destination and source registers. Previous research has shown that the full capacity of the dependency checking logic is not used at each cycle. In this paper we propose some techniques that make use of the unused capacity of the dependency checking logic of the rename stage in order to detect soft errors that occur on the register tags while the instructions are passing through the frontend of the processor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, R.: Soft Errors in Advanced Computer Systems. IEEE Design & Test of Computers 22(3), 258–266 (2005)

    Article  Google Scholar 

  2. Ergin, O., Unsal, O., Vera, X., González, A.: Exploiting Narrow Values for Soft Error Tolerance. IEEE Computer Architecture Letters (CAL) 5, 12–15 (2006)

    Article  Google Scholar 

  3. Ergin, O., Yalcin, G., Unsal, O., Valero, M.: Exploiting the Dependency Checking Logic of the Rename Stage for Soft Error Detection. In: 1st Workshop on Design for Reliability (DFR 2009) (January 2009)

    Google Scholar 

  4. Ernst, D., Austin, T.: Efficient Dynamic Scheduling Through Tag Elimination. In: ISCA, vol. 30, pp. 37–46 (2002)

    Google Scholar 

  5. Gochman, S., Mendelson, A., Naveh, A., Rotem, E.: Introduction to Intel Core Duo Processor Architecture. Intel Technology Journal 10(2) (May 2006)

    Google Scholar 

  6. Hinton, G., et al.: The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal 5(1) (February 2001)

    Google Scholar 

  7. Hu, J.S., Link, G.M., John, J.K., Wang, S., Ziavras, S.G.: Resource-driven optimizations for transient fault detecting superscalar microarchitectures. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS, vol. 3740, pp. 200–214. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Kessler, R.E.: The Alpha 21264 Microprocessor. IEEE Micro 19(2), 24–36 (1999)

    Article  MathSciNet  Google Scholar 

  9. Moshovos, A.: Power Aware Register Renaming, Computer Engineering Group Technical Report 01-08-2, University of Toronto (2002)

    Google Scholar 

  10. Mukherjee, S.S., et al.: A Systematic Methodology to Compute the Architectural Vulnerability Factors for a High-Performance Microprocessor. In: MICRO, pp. 29–40 (2003)

    Google Scholar 

  11. Mukherjee, S.S., et al.: Detailed Design and Evaluation of Redundant Multithreading Alternatives. In: ISCA, vol. 30(2), pp. 99–110 (2002)

    Google Scholar 

  12. Phelan, R.: Addressing Soft Errors in ARM Core-based Designs, White Paper, ARM (December 2003)

    Google Scholar 

  13. Reinhardt, S.K., Mukherjee, S.S.: Transient Fault Detection via Simultaneous Multithreading. In: ISCA, vol. 28(2), pp. 25–36 (2000)

    Google Scholar 

  14. Rotenberg, E., et al.: Trace cache: a low latency approach to high bandwidth instruction fetching. Tech Report 1310, CS Dept., Univ. of Wisc. - Madison (1996)

    Google Scholar 

  15. Sangireddy, R.: Reducing Rename Logic Complexity for High-Speed and Low-Power Front-End Architectures. IEEE Transactions on Computers 55(6), 672–685 (2006)

    Article  Google Scholar 

  16. Sharkey, J.: M-Sim: A Flexible, Multithreaded Architectural Simulation Environment. Technical Report CS-TR-05-DP01, Dept. of CS, SUNY — Binghamton (October 2005)

    Google Scholar 

  17. Sima, D.: The Design Space of Register Renaming Techniques. IEEE Micro 20(5), 70–83 (2000)

    Article  Google Scholar 

  18. Sridharan, V., Kaeli, D., Biswas, A.: Reliability in the Shadow of Long-Stall Instructions. In: SELSE-3 (2007)

    Google Scholar 

  19. Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-Fault Recovery Using Simultaneous Multithreading. In: ISCA, pp. 87–98 (2002)

    Google Scholar 

  20. Yalçın, G., Ergin, O.: Using Tag-Match Comparators for Detecting Soft Errors. IEEE Computer Architecture Letters 6, 53–56 (2007)

    Article  Google Scholar 

  21. Yourst, M.T.: PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator. In: Performance Analysis of Systems & Software, pp. 23–34 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kayaalp, M., Ergin, O., Ünsal, O.S., Valero, M. (2010). Exploiting Inactive Rename Slots for Detecting Soft Errors. In: Müller-Schloer, C., Karl, W., Yehia, S. (eds) Architecture of Computing Systems - ARCS 2010. ARCS 2010. Lecture Notes in Computer Science, vol 5974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11950-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11950-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11949-1

  • Online ISBN: 978-3-642-11950-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics