Skip to main content

Multiscale Homogenization Theory: An Analysis Tool for Revealing Mechanical Design Principles in Bone and Bone Replacement Materials

  • Chapter
  • First Online:
Biomimetics -- Materials, Structures and Processes

Abstract

Biomimetics deals with the application of nature-made “design solutions” to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand “building plans” inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component “collagen” induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the “collagen reinforcement” breaks. Bone replacement materials should mimic these “microstructural mechanics” features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265–268, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ch. Hellmich, D. Katti, Mechanics of biological and bioinspired materials and structures. J. Eng. Mech ASCE 35(5), 365–366 (2009)

    Article  Google Scholar 

  2. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–362 (1963)

    Article  ADS  MATH  Google Scholar 

  3. P. Suquet, Effective behavior of nonlinear composites, in Continuum Micromechanics, ed. by P. Suquet (Springer, Wien, New York, 1997), pp. 197 – 264

    Google Scholar 

  4. A. Zaoui, Structural morphology and constitutive behavior of microheterogeneous materials, in Continuum Micromechanics, ed. by P. Suquet (Springer, Wien, New York, 1997), pp. 291–347

    Google Scholar 

  5. A. Zaoui, Continuum micromechanics: survey. J. Eng. Mech ASCE 128(8), 808–816 (2002)

    Article  Google Scholar 

  6. L. Dormieux, D. Kondo, F.-J. Ulm, Microporomechanics (Wiley, 2006)

    Google Scholar 

  7. R. Hill, Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  ADS  MATH  Google Scholar 

  8. G.J. Dvorak, Transformation field analysis of inelastic composite materials. Proc. R. Soc. Lond. A 437, 311–327 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. N. Laws, The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J. Elasticity 7(1), 91–97 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Fritsch, Ch. Hellmich, L. Dormieux, Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J. Theor. Biol. 260, 230–252 (2009)

    Article  Google Scholar 

  12. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5), 571–574 (1973)

    Article  Google Scholar 

  13. K. Wakashima, H. Tsukamoto, Mean-field micromechanics model and its application to the analysis of thermomechanical behaviour of composite materials. Mater. Sci. Eng. A 146(1–2), 291–316 (1991)

    Google Scholar 

  14. A.V. Hershey, The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech. ASME 21, 236–240 (1954)

    MATH  Google Scholar 

  15. J.L. Katz, H.S. Yoon, S. Lipson, R Maharidge, A. Meunier, P. Christel, The effects of remodelling on the elastic properties of bone. Calcif. Tissue Int 36, S31–S36 (1984)

    Google Scholar 

  16. S. Lees, Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect. Tissue Res. 16, 281–303 (1987)

    Article  Google Scholar 

  17. S. Cusack, A. Miller, Determination of the elastic constants of collagen by Brillouin light scattering. J. Mol. Biol. 135, 39–51 (1979)

    Article  Google Scholar 

  18. A. Miller, Collagen: the organic matrix of bone. Philos Trans. R. Soc. Lond. B 304, 455–477 (1984)

    Article  ADS  Google Scholar 

  19. S. Lees, N.-J. Tao, M. Lindsay, Studies of compact hard tissues and collagen by means of Brillouin light scattering. Connect. Tissue Res. 24, 187–205 (1990)

    Article  Google Scholar 

  20. S. Lees, K.S. Prostak, V.K. Ingle, K. Kjoller, The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55, 180–189 (1994)

    Article  Google Scholar 

  21. S. Weiner, T. Arad, I. Sabanay, W. Traub, Rotated plywood structure of primary lamellar bone in the rat: orientation of the collagen fibril arrays. Bone 20, 509–514 (1997)

    Article  Google Scholar 

  22. S. Weiner, H.D. Wagner, The material bone: structure – mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  ADS  Google Scholar 

  23. J.-Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  24. K.S. Prostak, S. Lees, Visualization of crystal-matrix structure. In situ demineralization of mineralized turkey leg tendon and bone. Calcified Tissue Int. 59, 474–479 (1996)

    Google Scholar 

  25. J.P.R.O. Orgel, T.C. Irving, A. Miller, T.J. Wess, Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 103(24), 9001–9005 (2006)

    Article  ADS  Google Scholar 

  26. W.J. Landis, M.J. Song, A. Leith, L. McEwen, B.F. McEwen, Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110, 39–54 (1993)

    Article  Google Scholar 

  27. S. Lees, P. Cleary, J.D. Heeley, E.L. Gariepy, Distribution of sonic plesio-velocity in a compact bone sample. J. Acoust. Soc. Am. 66(3), 641–646 (1979)

    Article  ADS  Google Scholar 

  28. J.L. Katz, K. Ukraincik, On the anisotropic elastic properties of hydroxyapatite. J. Biomech. 4, 221–227 (1971)

    Article  Google Scholar 

  29. R.S. Gilmore, J.L. Katz, Elastic properties of apatites. J. Mater. Sci. 17, 1131–1141 (1982)

    Article  ADS  Google Scholar 

  30. H. Yao, L. Ouyang, W.-Y. Ching, Ab initio calculation of elastic constants of ceramic crystals. J. Am. Ceramic Soc. 90(10), 3194–3204 (2007)

    Article  Google Scholar 

  31. W.Y. Ching, P. Rulis, A. Misra, Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 5, 3067–3075 (2009)

    Article  Google Scholar 

  32. M. Akao, H. Aoki, K. Kato, Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 16, 809–812 (1981)

    Article  ADS  Google Scholar 

  33. M.Y. Shareef, P.F. Messer, R. van Noort, Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic. Biomaterials 14(1), 69–75 (1993)

    Article  Google Scholar 

  34. A. Fritsch, L. Dormieux, Ch. Hellmich, J. Sanahuja, Mechanical behaviour of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J. Biomed. Mater. Res. A 88A, 149–161 (2009)

    Article  Google Scholar 

  35. N. Bilaniuk, G.S.K. Wong, Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 93(3), 1609–1612 (1993)

    Article  ADS  Google Scholar 

  36. E. Gentleman, A.N. Lay, D.A. Dickerson, E.A. Nauman, G.A. Livesay, K.C. Dee. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24, 3805–3813 (2003)

    Article  Google Scholar 

  37. S. Lees, L.C. Bonar, H.A. Mook, A study of dense mineralized tissue by neutron diffraction. Int. J. Biol. Macromol. 6, 321–326 (1984)

    Article  Google Scholar 

  38. Y.-L. Sun, Z.-P. Luo, A. Fertala, K.-N. An, Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295, 382–386 (2002)

    Article  Google Scholar 

  39. M.J. Buehler, Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1, 59–67 (2008)

    Article  Google Scholar 

  40. Ch. Hellmich, J.-F. Barthélémy, L. Dormieux, Mineral-collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach. Eur. J. Mech. A Solids 23, 783–810 (2004)

    Article  ADS  MATH  Google Scholar 

  41. A. Fritsch, Ch. Hellmich, ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244(4), 597–620 (2007)

    Article  Google Scholar 

  42. A.H. Burstein, J.J.M. Zika, K.G. Heiple, L. Klein, Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg. 57A, 956–961 (1975)

    Google Scholar 

  43. S. Lees, D. Hanson, E.A. Page, H.A. Mook, Comparison of dosage-dependent effects of beta-aminopropionitrile, sodium fluoride, and hydrocortisone on selected physical properties of cortical bone. J. Bone Miner. Res. 9(9), 1377–1389 (1994)

    Article  Google Scholar 

  44. R.N. McCarthy, L.B. Jeffcott, R.N. McCartney, Ultrasound speed in equine cortical bone: effects of orientation, density, porosity and temperature. J. Biomech. 23(11), 1139–1143 (1990)

    Article  Google Scholar 

  45. S. Lees, J.D. Heeley, P.F. Cleary, A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tissue Int. 29, 107–117 (1979)

    Article  Google Scholar 

  46. S. Lees, J.M. Ahern, M. Leonard, Parameters influencing the sonic velocity in compact calcified tissues of various species. J. Acoust. Soc. Am. 74(1), 28–33 (1983)

    Article  ADS  Google Scholar 

  47. A.J. Hodge, J.A. Petruska, Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule, in Aspects of Protein Structure – Proceedings of a Symposium Held in Madras 14–18 January 1963 and Organized by the University of Madras, India, ed. by G.N. Ramachandran (Academic, London, 1963), pp. 289–300

    Google Scholar 

  48. Ch. Hellmich, F.-J. Ulm, Average hydroxyapatite concentration is uniform in extracollagenous ultrastructure of mineralized tissue. Biomech. Model. Mechanobiol. 2, 21–36 (2003)

    Article  Google Scholar 

  49. J.G.J. Peelen, B.V. Rejda, K. de Groot, Preparation and properties of sintered hydroxylapatite. Ceramurgia Int. 4(2), 71–74 (1978)

    Article  Google Scholar 

  50. R.I. Martin, P.W. Brown, Mechanical properties of hydroxyapatite formed at physiological temperature. J. Mater. Sci. Mater. Med. 6, 138–143 (1995)

    Article  Google Scholar 

  51. D.-M. Liu, Preparation and characterisation of porous hydroxyapatite bioceramic via a slip-casting route. Ceramics Int. 24, 441–446 (1998)

    Article  Google Scholar 

  52. E. Charrière, S. Terrazzoni, C. Pittet, Ph. Mordasini, M. Dutoit, J. Lemaître, Ph. Zysset, Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22, 2937–2945 (2001)

    Article  Google Scholar 

  53. R.B. Ashman, S.C. Cowin, W.C. van Buskirk, J.C. Rice, A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech. 17(5), 349–361 (1984)

    Article  Google Scholar 

  54. R.B. Ashman, J.Y. Rho, Elastic modulus of trabecular bone material. J. Biomech. 21(3), 177–181 (1988)

    Article  Google Scholar 

  55. J.D. Currey, Differences in the tensile strength of bone of different histological types. J. Anat. 93, 87–95 (1959)

    Google Scholar 

  56. E.D. Sedlin, C. Hirsch, Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop. Scand. 37, 29–48 (1966)

    Article  Google Scholar 

  57. A.H. Burstein, J.D. Currey, V.H. Frankel, D.T. Reilly, The ultimate properties of bone tissue: the effects of yielding. J. Biomech. 5, 35–44 (1972)

    Article  Google Scholar 

  58. D.T. Reilly, A.H. Burstein, The elastic modulus for bone. J. Biomech. 7, 271–275 (1974)

    Article  Google Scholar 

  59. D.T. Reilly, A.H. Burstein, The elastic and ultimate properties of compact bone tissue. J. Biomech. 8, 393–405 (1975)

    Article  Google Scholar 

  60. J.D. Currey, The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. J. Biomech. 8, 81–86 (1975)

    Article  Google Scholar 

  61. A.H. Burstein, D.T. Reilly, M. Martens, Aging of bone tissue: mechanical properties. J. Bone Joint Surg. 58A, 82–86 (1976)

    Google Scholar 

  62. R.P. Dickenson, W.C. Hutton, J.R. Stott, The mechanical properties of bone in osteoporosis. J. Bone Joint Surg. 63-B(2), 233–238 (1981)

    Google Scholar 

  63. H. Cezayirlioglu, E. Bahniuk, D.T. Davy, K.G. Heiple, Anisotropic yield behavior of bone under combined axial force and tension. J. Biomech. 18(1), 61–69 (1985)

    Article  Google Scholar 

  64. R.B. Martin, J. Ishida, The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J. Biomech. 22, 419–426 (1989)

    Article  Google Scholar 

  65. J.D. Currey, Physical characteristics affecting the tensile failure properties of compact bone. J. Biomech. 23, 837–844 (1990)

    Article  Google Scholar 

  66. R.W. McCalden, J.A. McGeough, M.B. Barker, C.M. Court-Brown, Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J. Bone Joint Surg. 75-A(8), 1193–1205 (1993)

    Google Scholar 

  67. C.M. Riggs, L.C. Vaughan, G.P. Evans, L.E. Lanyon, A. Boyde, Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat. Embryol. 187, 239–248 (1993)

    Google Scholar 

  68. S.C. Lee, B.S. Coan, M.L. Bouxsein, Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone 21(1), 119–125 (1997)

    Article  Google Scholar 

  69. S.P. Kotha, N. Guzelsu, Modeling the tensile mechanical behavior of bone along the longitudinal direction. J. Theor. Biol. 219, 269–279 (2002)

    Article  MathSciNet  Google Scholar 

  70. J.D. Currey, Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J. Biomech. 37, 549–556 (2004)

    Article  Google Scholar 

  71. Ch. Hellmich, H.W. Müllner, Ch. Kohlhauser, Mechanical (triaxial) tests on biological materials and biomaterials. Technical Report DNRT3-1.2-3, Network of Excellence ’Knowledge-based Multicomponent Materials for Durable and Safe Performance – KMM-NoE’, sponsored by the European Commission, October 2006

    Google Scholar 

  72. F. Peters, K. Schwarz, M. Epple, The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim. Acta 361, 131–138 (2000)

    Google Scholar 

  73. M. Epple, Solid-state chemical methods to investigate the nature of calcified deposits. Zeitschrift für Kardiologie 90(Suppl. 3), III/64–III/67 (2001)

    Google Scholar 

  74. V. Benezra Rosen, L.W. Hobbs, M. Spector, The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatites used as bone graft substitute material. Biomaterials 23, 921–928 (2002)

    Article  Google Scholar 

  75. Ch. Hellmich, F.-J. Ulm, Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments. J. Biomech. 35, 1199–1212 (2002)

    Google Scholar 

  76. S. Lees, D. Hanson, E.A. Page, Some acoustical properties of the otic bones of a fin whale. J. Acoust. Soc. Am. 99(4), 2421–2427 (1995)

    Article  ADS  Google Scholar 

  77. G. De With, H.J.A. van Dijk, N. Hattu, K. Prijs, Preparation, microstructure and mechanical properties of dense polycrystalline hydroxy apatite. J. Mater. Sci. 16, 1592–1598 (1981)

    Article  ADS  Google Scholar 

  78. I.H. Arita, D.S. Wilkinson, M.A. Mondragón, V.M. Castaño, Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity. Biomaterials 16, 403–408 (1995)

    Article  Google Scholar 

  79. H. Kupfer, H.K. Hilsdorf, H. Rusch, Behavior of concrete under biaxial stresses. ACI J. 66, 656–666 (1969)

    Google Scholar 

  80. D. Zahn, O. Hochrein, Computational study of interfaces between hydroxyapatite and water. Phys. Chem. Chem. Phys. 5, 4004–4007 (2003)

    Article  Google Scholar 

  81. D. Zahn, O. Hochrein, A. Kawska, J. Brickmann, R. Kniep, Towards an atomistic understanding of apatite-collagen biomaterials: linking molecular simulation studies of complex-, crystal- and composite-formation to experimental findings. J. Mater. Sci. 42, 8966–8973 (2007)

    Article  ADS  Google Scholar 

  82. R. Bhowmik, K.S. Katti, D.R. Katti, Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J. Mater. Sci. 42, 8795–8803 (2007)

    Article  ADS  Google Scholar 

  83. R. Bhowmik, K.S. Katti, D.R. Katti, Mechanisms of load-deformation behavior of molecular collagen in hydroxyapatite-tropocollagen molecular system: steered molecular dynamics study. J. Eng. Mech. 135(5), 413–421 (2009)

    Article  Google Scholar 

  84. M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006)

    Article  ADS  Google Scholar 

  85. J.F. Mano, C.M. Vaz, S.C. Mendes, R.L. Reis, A.M. Cunha, Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. J. Mater. Sci. Mater. Med. 10, 857–862 (1999)

    Article  Google Scholar 

  86. D. Verma, K. Katti, D. Katti, Effect of biopolymers on structure of hydroxyapatite and interfacial interactions in biomimetically synthesized hydroxyapatite/biopolymer nanocomposites. Ann. Biomed. Eng. 36(6), 1024–1032 (2008)

    Article  Google Scholar 

  87. C. Du, F.Z. Cui, X.D. Zhu, K. de Groot, Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res. A 44(4), 407–415 (2004)

    Article  Google Scholar 

  88. J.D. Hartgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001)

    Article  ADS  Google Scholar 

  89. D.A. Wahl, J.T. Czernuszka, Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 11, 43–56 (2006)

    Google Scholar 

  90. S.A. Catledge, W.C. Clem, N. Shrikishen, S. Chowdhury, A.V. Stanishevsky, M. Koopman, Y.K. Vohra, An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed. Mater. 2(2), 142–150 (2007)

    Article  ADS  Google Scholar 

  91. D.W. Green, Tissue bionics: examples in biomimetic tissue engineering. Biomed. Mater. 3, 034010 (2008)

    Article  ADS  Google Scholar 

  92. A. Ficai, E. Andronescu, G. Voicu, D. Manzu, M. Ficai, Layer by layer deposition of hydroxyapatite onto the collagen matrix. Mater. Sci. Eng. C 29, 2217–2220 (2009)

    Article  Google Scholar 

  93. Y. Han, S. Li, X. Wang, X. Chen, Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method. Mater. Res. Bull. 39, 25–32 (2004)

    Article  Google Scholar 

  94. A. Tampieri, G. Celotti, El. Landi, M. Sandri, N. Roveri, G. Falini, Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J. Biomed. Mater. Res. A, 67A(2), 618–625 (2003)

    Google Scholar 

  95. Ch. Jäger, T. Welzel, W. Meyer-Zaika, M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 44(6), 573–580 (2006)

    Article  Google Scholar 

  96. G.E. Poinern, R.K. Brundavanam, N. Mondinos, Z.-T. Jiang, Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem. 16, 469–474 (2009)

    Article  Google Scholar 

  97. R. Khanna, K.S. Katti, D.R. Katti, Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials. J. Eng. Mech ASCE 135(5), 468–478 (2009)

    Article  Google Scholar 

  98. A. Seilacher, Arbeitskonzept zur Konstruktionsmorphologie (Concept for structure-morphology). Lethaia 3, 393–396 (1970), in German

    Google Scholar 

  99. S.J. Gould, R.C. Lewontin, The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist program. Proc. R. Soc. Lond. B 205(1161), 581–598 (1979)

    Article  ADS  Google Scholar 

  100. Y. Kolodny, B. Luz, M. Sander, W.A. Clemens, Dinosaur bones: fossils or pseudomorphs? the pitfalls of physiology reconstruction from apatitic fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 161–71 (1996)

    Article  Google Scholar 

  101. N.K. Mathur, C.K. Narang, Chitin and chitosan, versatile polysaccharides from marine animals. J. Chem. Educ. 67, 938–942 (1990)

    Article  Google Scholar 

  102. S. Weiner, L. Addadi, H.D. Wagner, Materials design in biology. Mater. Sci. Eng. C 11, 1–8 (2000)

    Article  Google Scholar 

  103. S. Lees, Elastic properties and measurement techniques of hard tissues, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Volume III: Elastic Properties of Solids, Chapter 7, ed. by M. Levy, H. Bass, R. Stern (Academic, New York, 2001), pp. 147–181

    Google Scholar 

  104. H.C.W. Skinner, A.H. Jahren, Biomineralization, in Treatise on Geochemistry, Volume 8: Biogeochemistry, Chapter 4, ed. by W.H. Schlesinger (Elsevier, Amsterdam, The Netherlands, 2003), pp. 117–184

    Google Scholar 

  105. I.C. Gebeshuber, H. Stachelberger, B.A. Ganji, D.C. Fu, J. Yunas, B.Y. Majlis, Exploring the innovational potential of biomimetics for novel 3D MEMS. Adv. Mater. Res. 74, 265–268 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hellmich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hellmich, C., Fritsch, A., Dormieux, L. (2011). Multiscale Homogenization Theory: An Analysis Tool for Revealing Mechanical Design Principles in Bone and Bone Replacement Materials. In: Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, HB., Stachelberger, H., Gebeshuber, I. (eds) Biomimetics -- Materials, Structures and Processes. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11934-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11934-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11933-0

  • Online ISBN: 978-3-642-11934-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics